Warshan Denis, Espinoza Josh L, Stuart Rhona K, Richter R Alexander, Kim Sea-Yong, Shapiro Nicole, Woyke Tanja, C Kyrpides Nikos, Barry Kerrie, Singan Vasanth, Lindquist Erika, Ansong Charles, Purvine Samuel O, M Brewer Heather, Weyman Philip D, Dupont Christopher L, Rasmussen Ulla
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
J Craig Venter Institute, La Jolla, CA, USA.
ISME J. 2017 Dec;11(12):2821-2833. doi: 10.1038/ismej.2017.134. Epub 2017 Aug 11.
Dinitrogen (N)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss-cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria-plant symbioses, with Nostoc retaining motility, and lacking modulation of N-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant-cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria-feathermoss symbiosis.
与羽藓共生的蓝细菌进行的固氮作用是北方森林生物氮输入的主要途径。尽管其意义重大,但对于共生关系建立和维持所需的蓝细菌基因库及调控重布线却知之甚少。为了确定使蓝细菌形成并维持这种共生关系的基因获得和调控变化,我们使用蛋白质基因组学方法以及一种允许共生伙伴之间进行可控化学和物理接触的实验设置,比较了基因组上密切相关的具有共生能力和不具有共生能力的念珠藻菌株。仅在共生菌株的基因组中发现了32个基因家族,其中包括一些以前从未与蓝细菌共生相关的基因家族。我们鉴定出了在共生菌株中差异表达的保守直系同源基因,包括参与趋化性和运动性、一氧化氮调控、硫酸盐/磷酸盐转运以及糖基修饰和氧化应激介导的外切酶的蛋白质家族。羽藓 - 蓝细菌的物理附生共生关系与其他蓝细菌 - 植物共生关系不同,念珠藻保持运动性,并且固氮、光合作用、谷氨酰胺合成酶 - 谷氨酸合酶循环和异形胞形成缺乏调控。这些结果扩展了我们关于植物 - 蓝细菌共生关系的知识库,提供了这种具有生态重要性的共生关系中信息和物质交换的模型,并表明新的物质,即一氧化氮和脂肪族磺酸盐,可能参与建立和维持蓝细菌 - 羽藓共生关系。