Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada.
J Physiol. 2018 Aug;596(15):3101-3117. doi: 10.1113/JP274743. Epub 2017 Sep 21.
Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current I in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the I activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on I .
Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (I ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced I whereas the HCN blocker ZD7288 (2 μm) reversibly inhibited I . Adenosine caused a potentiation of I (EC ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V for voltage dependence of I activation. By contrast, DA (10 μm) caused an inhibition of I that was sensitive to the D2 blocker sulpiride (1-10 μm), and an ∼11 mV hyperpolarizing shift in V . Sulpiride potentiated I in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on I .
腺苷和多巴胺 (DA) 是颈动脉体 (CB) 化学感觉通路中的神经调质,但它们的作用机制尚不完全清楚。使用大鼠 CB 化学感受器 (I 型) 细胞和感觉耳石神经元 (PN) 的功能共培养物,我们表明腺苷通过 A2a 受体增强化学感觉 PN 中的超极化激活阳离子电流 I,而 DA 通过 D2 受体产生相反的作用。腺苷引起 I 激活曲线的去极化偏移并增加放电频率,而 DA 引起曲线的超极化偏移并降低放电频率。急性低氧和等渗高碳酸血症使 I 型细胞去极化,同时增加相邻 PN 的兴奋;A2a 受体阻滞剂 SCH58261 抑制低氧时的 I 型细胞和 PN 反应,但仅抑制等渗高碳酸血症时的 PN 反应。我们提出,腺苷和 DA 通过对 I 的相反作用来控制化学感觉 PN 的放电频率。
腺苷和多巴胺 (DA) 在颈动脉体 (CB) 化学感觉突触处作为神经递质或神经调质发挥作用,但它们的作用机制尚不完全清楚。使用大鼠 CB 化学感受器 (I 型) 细胞簇和毗邻传入耳石神经元 (PN) 的功能共培养模型,我们检验了以下假设:腺苷和 DA 作为突触后调节剂,调节超极化激活的环核苷酸门控 (HCN) 阳离子电流 (I)。在对低氧反应性 PN 的全细胞记录中,cAMP 模拟物增强了 I,而 HCN 阻断剂 ZD7288(2μm) 可逆地抑制了 I。腺苷引起 I 的增强 (EC∼35nm),对 A2a 阻断剂 SCH58261(5nm)敏感,电压依赖性 I 激活的 V 发生约 16mV 的去极化偏移。相比之下,DA(10μm)引起 I 的抑制,对 D2 阻断剂 sulpiride(1-10μm)敏感,V 发生约 11mV 的超极化偏移。Sulpiride 增强了与 I 型细胞簇相邻但不远处的神经元中的 I。DA 还降低了 PN 动作电位频率,而腺苷则产生相反的效果。在同时进行的成对记录中,SCH58261 抑制了 I 型细胞中缺氧诱导的受体电位和化学感觉 PN 反应。相比之下,SCH58261 仅抑制等渗高碳酸血症诱导的化学感觉 PN 反应。共聚焦免疫荧光证实了 HCN4 亚基在大鼠耳石神经节组织切片中酪氨酸羟化酶阳性化学感觉神经元中的定位。这些数据表明,腺苷和 DA 通过分别作用于 A2a 和 D2 受体,通过对 I 的相反作用来调节 PN 的兴奋性。