Suppr超能文献

基于机理模型和人工神经网络的蛋白质色谱偏差根本原因调查。

Root cause investigation of deviations in protein chromatography based on mechanistic models and artificial neural networks.

作者信息

Wang Gang, Briskot Till, Hahn Tobias, Baumann Pascal, Hubbuch Jürgen

机构信息

Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.

GoSilico GmbH, Karlsruhe, Germany.

出版信息

J Chromatogr A. 2017 Sep 15;1515:146-153. doi: 10.1016/j.chroma.2017.07.089. Epub 2017 Aug 1.

Abstract

In protein chromatography, process variations, such as aging of column or process errors, can result in deviations of the product and impurity levels. Consequently, the process performance described by purity, yield, or production rate may decrease. Based on visual inspection of the UV signal, it is hard to identify the source of the error and almost unfeasible to determine the quantity of deviation. The problem becomes even more pronounced, if multiple root causes of the deviation are interconnected and lead to an observable deviation. In the presented work, a novel method based on the combination of mechanistic chromatography models and the artificial neural networks is suggested to solve this problem. In a case study using a model protein mixture, the determination of deviations in column capacity and elution gradient length was shown. Maximal errors of 1.5% and 4.90% for the prediction of deviation in column capacity and elution gradient length respectively demonstrated the capability of this method for root cause investigation.

摘要

在蛋白质色谱中,工艺变化(如色谱柱老化或工艺错误)可能导致产品和杂质水平出现偏差。因此,由纯度、产率或生产率所描述的工艺性能可能会下降。基于紫外信号的目视检查,很难识别误差来源,而且几乎无法确定偏差的量。如果偏差的多个根本原因相互关联并导致可观察到的偏差,问题会变得更加明显。在本研究中,提出了一种基于机理色谱模型和人工神经网络相结合的新方法来解决这一问题。在一个使用模型蛋白质混合物的案例研究中,展示了对色谱柱容量和洗脱梯度长度偏差的测定。分别预测色谱柱容量偏差和洗脱梯度长度时的最大误差为1.5%和4.90%,证明了该方法用于根本原因调查的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验