Heusel Matthias, Grim Gunnar, Rauhut Joel, Franzreb Matthias
Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Andritz Separation GmbH, Industriestraße 1-3, 85256 Vierkirchen, Germany.
Bioengineering (Basel). 2024 Feb 23;11(3):212. doi: 10.3390/bioengineering11030212.
Dynamic crossflow filtration (DCF) is the state-of-the-art technology for solid-liquid separation from viscous and sensitive feed streams in the food and biopharma industry. Up to now, the potential of industrial processes is often not fully exploited, because fixed recipes are usually applied to run the processes. In order to take the varying properties of biological feed materials into account, we aim to develop a digital twin of an industrial brownfield DCF plant, allowing to optimize setpoint decisions in almost real time. The core of the digital twin is a mechanistic-empirical process model combining fundamental filtration laws with process expert knowledge. The effect of variation in the selected process and model parameters on plant productivity has been assessed using a model-based design-of-experiments approach, and a regression metamodel has been trained with the data. A cyclic program that bidirectionally communicates with the DCF asset serves as frame of the digital twin. It monitors the process dynamics membrane torque and transmembrane pressure and feeds back the optimum permeate flow rate setpoint to the physical asset in almost real-time during process runs. We considered a total of 24 industrial production batches from the filtration of grape juice from the years 2022 and 2023 in the study. After implementation of the digital twin on site, the campaign mean productivity increased by 15% over the course of the year 2023. The presented digital twin framework is a simple example how an industrial established process can be controlled by a hybrid model-based algorithm. With a digital process dynamics model at hand, the presented metamodel optimization approach can be easily transferred to other (bio)chemical processes.
动态错流过滤(DCF)是食品和生物制药行业中用于从粘性和敏感进料流中进行固液分离的先进技术。到目前为止,工业过程的潜力往往没有得到充分利用,因为通常采用固定的配方来运行这些过程。为了考虑生物进料材料的不同特性,我们旨在开发一个工业棕地DCF工厂的数字孪生模型,以便能够几乎实时地优化设定点决策。数字孪生模型的核心是一个机械-经验过程模型,它将基本过滤定律与过程专家知识相结合。使用基于模型的实验设计方法评估了所选过程和模型参数变化对工厂生产率的影响,并使用这些数据训练了一个回归元模型。一个与DCF资产双向通信的循环程序作为数字孪生模型的框架。它监测过程动态、膜扭矩和跨膜压力,并在过程运行期间几乎实时地将最佳渗透流速设定点反馈给物理资产。在这项研究中,我们考虑了2022年和2023年葡萄汁过滤的总共24个工业生产批次。在现场实施数字孪生模型后,2023年全年的活动平均生产率提高了15%。所提出的数字孪生框架是一个简单的例子,展示了一个工业既定过程如何通过基于混合模型的算法进行控制。有了数字过程动力学模型,所提出的元模型优化方法可以很容易地转移到其他(生物)化学过程中。