Suppr超能文献

生长素诱导的 ETTIN 活性调控调控拟南芥基因表达。

Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis.

机构信息

Crop Genetics Department, John Innes Centre, NR4 7UH Norwich, United Kingdom.

Computational and System Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom.

出版信息

Plant Cell. 2017 Aug;29(8):1864-1882. doi: 10.1105/tpc.17.00389. Epub 2017 Aug 13.

Abstract

The phytohormone auxin governs crucial developmental decisions throughout the plant life cycle. Auxin signaling is effectuated by auxin response factors (ARFs) whose activity is repressed by Aux/IAA proteins under low auxin levels, but relieved from repression when cellular auxin concentrations increase. ARF3/ETTIN (ETT) is a conserved noncanonical ARF that adopts an alternative auxin-sensing mode of translating auxin levels into multiple transcriptional outcomes. However, a mechanistic model for how this auxin-dependent modulation of ETT activity regulates gene expression has not yet been elucidated. Here, we take a genome-wide approach to show how ETT controls developmental processes in the Arabidopsis shoot through its auxin-sensing property. Moreover, analysis of direct ETT targets suggests that ETT functions as a central node in coordinating auxin dynamics and plant development and reveals tight feedback regulation at both the transcriptional and protein-interaction levels. Finally, we present an example to demonstrate how auxin sensitivity of ETT-protein interactions can shape the composition of downstream transcriptomes to ensure specific developmental outcomes. These results show that direct effects of auxin on protein factors, such as ETT-TF complexes, comprise an important part of auxin biology and likely contribute to the vast number of biological processes affected by this simple molecule.

摘要

植物激素生长素在植物生命周期的各个阶段控制着关键的发育决策。生长素信号转导是通过生长素反应因子 (ARFs) 实现的,在低生长素水平下,其活性受到Aux/IAA 蛋白的抑制,但当细胞内生长素浓度增加时,这种抑制作用就会解除。ARF3/ETTIN (ETT) 是一种保守的非典型 ARF,它采用替代的生长素感应模式,将生长素水平转化为多种转录结果。然而,目前还没有阐明这种生长素依赖性调节 ETT 活性的机制模型如何调节基因表达。在这里,我们采用全基因组的方法来展示 ETT 如何通过其生长素感应特性来控制拟南芥茎中的发育过程。此外,对直接的 ETT 靶标的分析表明,ETT 作为协调生长素动态和植物发育的中心节点发挥作用,并揭示了在转录和蛋白相互作用水平的紧密反馈调节。最后,我们提出了一个例子来说明 ETT 蛋白相互作用的生长素敏感性如何塑造下游转录组的组成,以确保特定的发育结果。这些结果表明,生长素对蛋白质因子(如 ETT-TF 复合物)的直接影响构成了生长素生物学的重要组成部分,可能有助于解释这个简单分子影响的大量生物学过程。

相似文献

1
Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis.
Plant Cell. 2017 Aug;29(8):1864-1882. doi: 10.1105/tpc.17.00389. Epub 2017 Aug 13.
3
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis.
Genes Dev. 2016 Oct 15;30(20):2286-2296. doi: 10.1101/gad.285361.116.
5
Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.
Plant Cell. 2005 Nov;17(11):2899-910. doi: 10.1105/tpc.105.034876. Epub 2005 Sep 30.
8
Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling.
EMBO J. 2020 Jan 2;39(1):e101515. doi: 10.15252/embj.2019101515. Epub 2019 Oct 16.

引用本文的文献

2
Dual role of pectin methyl esterase activity in the regulation of plant cell wall biophysical properties.
Front Plant Sci. 2025 Jul 4;16:1612366. doi: 10.3389/fpls.2025.1612366. eCollection 2025.
3
Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation.
Physiol Plant. 2025 May-Jun;177(3):e70229. doi: 10.1111/ppl.70229.
4
Silencing of hindered flowering and boll cracking in upland cotton.
Front Plant Sci. 2025 Feb 25;16:1558293. doi: 10.3389/fpls.2025.1558293. eCollection 2025.
5
Conserved roles of ETT and ARF4 in gynoecium development in Brassicaceae with distinct fruit shapes.
Development. 2025 Feb 1;152(3). doi: 10.1242/dev.204263. Epub 2025 Feb 12.
6
Chromatin Immunoprecipitation for Standard, Rare, or Weakly Binding Proteins.
Methods Mol Biol. 2025;2873:93-109. doi: 10.1007/978-1-0716-4228-3_6.
7
START domains generate paralog-specific regulons from a single network architecture.
Nat Commun. 2024 Nov 14;15(1):9861. doi: 10.1038/s41467-024-54269-z.
8
Beyond stomatal development: SMF transcription factors as versatile toolkits for land plant evolution.
Quant Plant Biol. 2024 May 31;5:e6. doi: 10.1017/qpb.2024.6. eCollection 2024.
10
A 3-component module maintains sepal flatness in Arabidopsis.
Curr Biol. 2024 Sep 9;34(17):4007-4020.e4. doi: 10.1016/j.cub.2024.07.066. Epub 2024 Aug 14.

本文引用的文献

1
Strigolactone- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation.
Curr Biol. 2017 Apr 24;27(8):1241-1247. doi: 10.1016/j.cub.2017.03.014. Epub 2017 Apr 6.
2
Gynoecium formation: an intimate and complicated relationship.
Curr Opin Genet Dev. 2017 Aug;45:15-21. doi: 10.1016/j.gde.2017.02.005. Epub 2017 Feb 24.
3
The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots.
Plant Cell. 2016 Dec;28(12):2937-2951. doi: 10.1105/tpc.16.00656. Epub 2016 Dec 5.
4
A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis.
Genes Dev. 2016 Oct 15;30(20):2286-2296. doi: 10.1101/gad.285361.116.
5
Control of Oriented Tissue Growth through Repression of Organ Boundary Genes Promotes Stem Morphogenesis.
Dev Cell. 2016 Oct 24;39(2):198-208. doi: 10.1016/j.devcel.2016.08.013. Epub 2016 Sep 22.
6
Transcriptional Responses to the Auxin Hormone.
Annu Rev Plant Biol. 2016 Apr 29;67:539-74. doi: 10.1146/annurev-arplant-043015-112122. Epub 2016 Feb 22.
7
Auxin response factors.
Plant Cell Environ. 2016 May;39(5):1014-28. doi: 10.1111/pce.12662. Epub 2016 Jan 23.
8
Auxin signal transduction.
Essays Biochem. 2015;58:1-12. doi: 10.1042/bse0580001.
9
Refining the nuclear auxin response pathway through structural biology.
Curr Opin Plant Biol. 2015 Oct;27:22-8. doi: 10.1016/j.pbi.2015.05.007. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验