Suppr超能文献

全原子分子动力学模拟表明治疗性DNA聚合物具有离子依赖性行为。

All-atom MD indicates ion-dependent behavior of therapeutic DNA polymer.

作者信息

Melvin Ryan L, Gmeiner William H, Salsbury Freddie R

机构信息

Department of Physics, Wake Forest University, Winston Salem, NC, USA.

出版信息

Phys Chem Chem Phys. 2017 Aug 23;19(33):22363-22374. doi: 10.1039/c7cp03479b.

Abstract

Understanding the efficacy of and creating delivery mechanisms for therapeutic nucleic acids requires understanding structural and kinetic properties which allow these polymers to promote the death of cancerous cells. One molecule of interest is a 10 mer of FdUMP (5-fluoro-2'-deoxyuridine-5'-O-monophosphate) - also called F10. Here we investigate the structural and kinetic behavior of F10 in intracellular and extracellular solvent conditions along with non-biological conditions that may be efficacious in in vitro preparations of F10 delivery systems. From our all-atom molecular dynamics simulations totaling 80 microseconds, we predict that F10's phosphate groups form close-range interactions with calcium and zinc ions, with calcium having the highest affinity of the five ions investigated. We also predict that F10's interactions with magnesium, potassium and sodium are almost exclusively long-range interactions. In terms of intramolecular interactions, we find that F10 is least structured (in terms of hydrogen bonds among bases) in the 150 mM NaCl (extracellular-like solvent conditions) and most structured in 150 mM ZnCl. Kinetically, we see that F10 is unstable in the presence of magnesium, sodium or potassium, finding stable kinetic traps in the presence of calcium or zinc.

摘要

要了解治疗性核酸的功效并创建其递送机制,需要了解使其能够促进癌细胞死亡的结构和动力学特性。一种备受关注的分子是10聚体FdUMP(5-氟-2'-脱氧尿苷-5'-O-单磷酸),也称为F10。在此,我们研究了F10在细胞内和细胞外溶剂条件以及可能对F10递送系统体外制备有效的非生物条件下的结构和动力学行为。通过总计80微秒的全原子分子动力学模拟,我们预测F10的磷酸基团与钙和锌离子形成近距离相互作用,在所研究的五种离子中,钙具有最高的亲和力。我们还预测F10与镁、钾和钠的相互作用几乎完全是远距离相互作用。在分子内相互作用方面,我们发现F10在150 mM NaCl(类似细胞外的溶剂条件)中结构最少(就碱基间的氢键而言),而在150 mM ZnCl中结构最多。在动力学方面,我们发现F10在镁、钠或钾存在下不稳定,而在钙或锌存在下会出现稳定的动力学陷阱。

相似文献

1
All-atom MD indicates ion-dependent behavior of therapeutic DNA polymer.
Phys Chem Chem Phys. 2017 Aug 23;19(33):22363-22374. doi: 10.1039/c7cp03479b.
2
All-Atom Molecular Dynamics Reveals Mechanism of Zinc Complexation with Therapeutic F10.
J Phys Chem B. 2016 Oct 6;120(39):10269-10279. doi: 10.1021/acs.jpcb.6b07753. Epub 2016 Sep 21.
3
All-Atom MD Predicts Magnesium-Induced Hairpin in Chemically Perturbed RNA Analog of F10 Therapeutic.
J Phys Chem B. 2017 Aug 24;121(33):7803-7812. doi: 10.1021/acs.jpcb.7b04724. Epub 2017 Aug 10.
4
Sequence-specific Mg2+-DNA interactions: a molecular dynamics simulation study.
J Phys Chem B. 2011 Dec 15;115(49):14713-20. doi: 10.1021/jp2052568. Epub 2011 Nov 10.
5
Competitive Binding of Mg and Na Ions to Nucleic Acids: From Helices to Tertiary Structures.
Biophys J. 2018 Apr 24;114(8):1776-1790. doi: 10.1016/j.bpj.2018.03.001.
7
Explicit ions/implicit water generalized Born model for nucleic acids.
J Chem Phys. 2018 May 21;148(19):195101. doi: 10.1063/1.5027260.
8
RNA as a Complex Polymer with Coupled Dynamics of Ions and Water in the Outer Solvation Sphere.
J Phys Chem B. 2018 Dec 13;122(49):11218-11227. doi: 10.1021/acs.jpcb.8b06874. Epub 2018 Aug 27.
9
Choline ion interactions with DNA atoms explain unique stabilization of A-T base pairs in DNA duplexes: a microscopic view.
J Phys Chem B. 2014 Jan 16;118(2):379-89. doi: 10.1021/jp406647b. Epub 2013 Nov 25.

引用本文的文献

本文引用的文献

1
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
2
Uncovering Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge.
J Chem Theory Comput. 2016 Dec 13;12(12):6130-6146. doi: 10.1021/acs.jctc.6b00757. Epub 2016 Nov 10.
3
All-Atom Molecular Dynamics Reveals Mechanism of Zinc Complexation with Therapeutic F10.
J Phys Chem B. 2016 Oct 6;120(39):10269-10279. doi: 10.1021/acs.jpcb.6b07753. Epub 2016 Sep 21.
4
F10 cytotoxicity via topoisomerase I cleavage complex repair consistent with a unique mechanism for thymineless death.
Future Oncol. 2016 Oct;12(19):2183-8. doi: 10.2217/fon-2016-0127. Epub 2016 Jun 22.
5
The applications of the novel polymeric fluoropyrimidine F10 in cancer treatment: current evidence.
Future Oncol. 2016 Sep;12(17):2009-20. doi: 10.2217/fon-2016-0091. Epub 2016 Jun 9.
6
Visualizing ensembles in structural biology.
J Mol Graph Model. 2016 Jun;67:44-53. doi: 10.1016/j.jmgm.2016.05.001. Epub 2016 May 4.
7
An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware.
J Chem Theory Comput. 2009 Sep 8;5(9):2371-7. doi: 10.1021/ct900275y.
8
ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.
J Chem Theory Comput. 2009 Jun 9;5(6):1632-9. doi: 10.1021/ct9000685. Epub 2009 May 21.
9
Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.
J Phys Chem Lett. 2014 May 15;5(10):1771-82. doi: 10.1021/jz500557y. Epub 2014 May 7.
10
Delivery of oligonucleotides with lipid nanoparticles.
Adv Drug Deliv Rev. 2015 Jun 29;87:68-80. doi: 10.1016/j.addr.2015.02.007. Epub 2015 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验