Harvey M J, Giupponi G, Fabritiis G De
Information and Communications Technologies, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom, Department de Fisica Fundamental, Universitat de Barcelona, Carrer Marti i Franques 1, 08028 Barcelona, Spain, and Computational Biochemistry and Biophysics Lab (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/ Doctor Aiguader 88, 08003 Barcelona, Spain.
J Chem Theory Comput. 2009 Jun 9;5(6):1632-9. doi: 10.1021/ct9000685. Epub 2009 May 21.
The high arithmetic performance and intrinsic parallelism of recent graphical processing units (GPUs) can offer a technological edge for molecular dynamics simulations. ACEMD is a production-class biomolecular dynamics (MD) engine supporting CHARMM and AMBER force fields. Designed specifically for GPUs it is able to achieve supercomputing scale performance of 40 ns/day for all-atom protein systems with over 23 000 atoms. We provide a validation and performance evaluation of the code and run a microsecond-long trajectory for an all-atom molecular system in explicit TIP3P water on a single workstation computer equipped with just 3 GPUs. We believe that microsecond time scale molecular dynamics on cost-effective hardware will have important methodological and scientific implications.
近期图形处理单元(GPU)的高运算性能和内在并行性可为分子动力学模拟提供技术优势。ACEMD是一款支持CHARMM和AMBER力场的生产级生物分子动力学(MD)引擎。它专为GPU设计,对于超过23000个原子的全原子蛋白质系统,能够实现每天40纳秒的超级计算规模性能。我们对该代码进行了验证和性能评估,并在仅配备3个GPU的单台工作站计算机上,对处于显式TIP3P水中的全原子分子系统运行了一条长达微秒级的轨迹。我们相信,在经济高效的硬件上实现微秒时间尺度的分子动力学将具有重要的方法学和科学意义。