Department of Physics and Astronomy, U.S. DOE Ames Laboratory, Iowa State University , Ames, Iowa 50011, United States.
Department of Physics, University of California at San Diego , La Jolla, California 92093, United States.
Nano Lett. 2017 Sep 13;17(9):5423-5428. doi: 10.1021/acs.nanolett.7b02029. Epub 2017 Aug 18.
We report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. With rigorous simulations, we reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Furthermore, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.
我们使用散射型扫描近场光学显微镜(s-SNOM)对石墨烯纳米带(GNRs)的局域等离子体共振模式进行了纳米红外(IR)成像研究。通过比较与激发激光场的平面分量平行和垂直排列的 GNRs 的成像数据,我们分别观察到了对称和不对称的等离子体干涉条纹。理论分析表明,不对称条纹是由于 GNRs 激发的局域表面等离子体共振(SPR)模式与 s-SNOM 尖端激发的传播表面等离子体极化激元(SPP)模式之间的相互作用而形成的。通过严格的模拟,我们重现了观察到的条纹图案,并定量地解决了 s-SNOM 尖端对 SPR 和 SPP 模式的作用。此外,我们通过改变 ribbon 的宽度,看到了偶极和更高阶 SPR 模式的实空间特征。