Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt; Bioengineering Department, University of Louisville, Louisville KY 40292, USA.
Department of Ophthalmology & Visual Sciences, University of Massachusetts Medical School, Worcester, MA, USA.
Comput Biol Med. 2017 Oct 1;89:150-161. doi: 10.1016/j.compbiomed.2017.08.008. Epub 2017 Aug 7.
The retinal vascular network reflects the health of the retina, which is a useful diagnostic indicator of systemic vascular. Therefore, the segmentation of retinal blood vessels is a powerful method for diagnosing vascular diseases. This paper presents an automatic segmentation system for retinal blood vessels from Optical Coherence Tomography Angiography (OCTA) images. The system segments blood vessels from the superficial and deep retinal maps for normal and diabetic cases. Initially, we reduced the noise and improved the contrast of the OCTA images by using the Generalized Gauss-Markov random field (GGMRF) model. Secondly, we proposed a joint Markov-Gibbs random field (MGRF) model to segment the retinal blood vessels from other background tissues. It integrates both appearance and spatial models in addition to the prior probability model of OCTA images. The higher order MGRF (HO-MGRF) model in addition to the 1-order intensity model are used to consider the spatial information in order to overcome the low contrast between vessels and other tissues. Finally, we refined the segmentation by extracting connected regions using a 2D connectivity filter. The proposed segmentation system was trained and tested on 47 data sets, which are 23 normal data sets and 24 data sets for diabetic patients. To evaluate the accuracy and robustness of the proposed segmentation framework, we used three different metrics, which are Dice similarity coefficient (DSC), absolute vessels volume difference (VVD), and area under the curve (AUC). The results on OCTA data sets (DSC=95.04±3.75%, VVD=8.51±1.49%, and AUC=95.20±1.52%) show the promise of the proposed segmentation approach.
视网膜血管网络反映了视网膜的健康状况,它是系统性血管的有用诊断指标。因此,视网膜血管的分割是诊断血管疾病的有力方法。本文提出了一种从光学相干断层扫描血管造影(OCTA)图像中自动分割视网膜血管的系统。该系统从正常和糖尿病病例的浅层和深层视网膜图谱中分割血管。首先,我们使用广义高斯-马尔可夫随机场(GGMRF)模型降低 OCTA 图像的噪声并提高对比度。其次,我们提出了一种联合马尔可夫-吉布斯随机场(MGRF)模型,从其他背景组织中分割视网膜血管。它除了 OCTA 图像的先验概率模型外,还集成了外观和空间模型。除了 1 阶强度模型之外,高阶 MGRF(HO-MGRF)模型用于考虑空间信息,以克服血管和其他组织之间对比度低的问题。最后,我们使用二维连通性滤波器提取连通区域来细化分割。所提出的分割系统在 47 个数据集上进行了训练和测试,其中包括 23 个正常数据集和 24 个糖尿病患者数据集。为了评估所提出的分割框架的准确性和鲁棒性,我们使用了三个不同的度量标准,即骰子相似系数(DSC)、绝对血管体积差异(VVD)和曲线下面积(AUC)。OCTA 数据集上的结果(DSC=95.04±3.75%,VVD=8.51±1.49%,AUC=95.20±1.52%)表明了所提出的分割方法的前景。