Suppr超能文献

有序性状QTL定位中的联合参数估计

Joint parameter estimation in the QTL mapping of ordinal traits.

作者信息

Sheng Xiaona, Qiu Yihong, Zhou Ying, Zhu Wensheng

机构信息

School of Information Engineering, Harbin University, Harbin 150086, China.

School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China.

出版信息

J Theor Biol. 2017 Nov 7;432:100-108. doi: 10.1016/j.jtbi.2017.08.007. Epub 2017 Aug 12.

Abstract

With the rapid development of statistical genetics, the deep researches of ordinal traits have been gradually emphasized. The data of these traits bear relatively less information than those of continuous phenotypes, therefore it is more complex to map the quantitative trait loci (QTL) of ordinal traits. In this paper, the multiple-interval mapping method is considered in the genetic mapping of ordinal traits. By combining threshold model and statistical model, we build a cumulative logistic regression model to express the relationship between the ordinal data and the QTL genotypes. In order to make the interval mapping more straightforward, we treat the recombination rates as unknown parameters, and then simultaneously obtain the estimates of QTL positions, QTL effects and threshold parameters via the EM algorithm. We perform simulation experiments to investigate and compare the proposed method. We also present a real example to test the reasonableness of the considered model and estimate both model parameters and QTL parameters. Both results of simulations and example show that the method we proposed is reasonable and effective.

摘要

随着统计遗传学的快速发展,对有序性状的深入研究逐渐受到重视。这些性状的数据所承载的信息相对少于连续表型的数据,因此定位有序性状的数量性状基因座(QTL)更为复杂。本文在有序性状的遗传定位中考虑了多重区间作图方法。通过结合阈值模型和统计模型,构建了累积逻辑回归模型来表达有序数据与QTL基因型之间的关系。为了使区间作图更直接,我们将重组率视为未知参数,然后通过期望最大化(EM)算法同时获得QTL位置、QTL效应和阈值参数的估计值。我们进行模拟实验来研究和比较所提出的方法。我们还给出了一个实例来检验所考虑模型的合理性,并估计模型参数和QTL参数。模拟和实例的结果都表明我们提出的方法是合理且有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验