Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, 96822, USA.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Microbiol. 2017 Oct;2(10):1367-1373. doi: 10.1038/s41564-017-0008-3. Epub 2017 Aug 14.
The core properties of microbial genomes, including GC content and genome size, are known to vary widely among different bacteria and archaea . Several hypotheses have been proposed to explain this genomic variability, but the fundamental drivers that shape bacterial and archaeal genomic properties remain uncertain . Here, we report the existence of a sharp genomic transition zone below the photic zone, where bacterial and archaeal genomes and proteomes undergo a community-wide punctuated shift. Across a narrow range of increasing depth of just tens of metres, diverse microbial clades trend towards larger genome size, higher genomic GC content, and proteins with higher nitrogen but lower carbon content. These community-wide changes in genome features appear to be driven by gradients in the surrounding environmental energy and nutrient fields. Collectively, our data support hypotheses invoking nutrient limitation as a central driver in the evolution of core bacterial and archaeal genomic and proteomic properties.
微生物基因组的核心特性,包括 GC 含量和基因组大小,在不同的细菌和古菌中存在广泛的差异。已经提出了几种假设来解释这种基因组的可变性,但塑造细菌和古菌基因组特性的基本驱动因素仍然不确定。在这里,我们报告了在光区以下存在一个尖锐的基因组过渡带,在这个过渡带中,细菌和古菌的基因组和蛋白质组经历了全社区的突然转变。在仅仅数十米的小范围内,不同的微生物类群倾向于具有更大的基因组大小、更高的基因组 GC 含量以及具有更高氮但更低碳含量的蛋白质。这些全社区的基因组特征的变化似乎是由周围环境能量和营养场的梯度驱动的。总的来说,我们的数据支持了将营养限制作为核心细菌和古菌基因组和蛋白质组特性进化的中心驱动因素的假说。