Suppr超能文献

微生物和病毒基因组和蛋白质组的氮需求在海洋缺氧区的多个空间尺度上有所不同。

Microbial and Viral Genome and Proteome Nitrogen Demand Varies across Multiple Spatial Scales within a Marine Oxygen Minimum Zone.

机构信息

Georgia Institute of Technology, Interdisciplinary Program in Quantitative Biosciences, School of Biological Sciences, Atlanta, Georgia, USA.

Georgia Institute of Technology, School of Biological Sciences, Atlanta, Georgia, USA.

出版信息

mSystems. 2023 Apr 27;8(2):e0109522. doi: 10.1128/msystems.01095-22. Epub 2023 Mar 15.

Abstract

Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles.

摘要

养分的可利用性会显著影响微生物的基因组和蛋白质组的简化,例如,通过选择更低的氮碳比。贫营养的开阔海洋微生物相对于富营养沿海水域的微生物,其基因组对氮的需求已经简化。然而,在米级甚至微米级的空间尺度上,养分的可利用性存在着陡峭的梯度。目前尚不清楚这种梯度是否也会影响基因组和蛋白质组的化学计量。本研究以东热带北太平洋缺氧区(OMZ)为研究对象,利用比较宏基因组学的方法来研究氮的可利用性如何沿 OMZ 以及在两个大小分数之间的垂直梯度来塑造微生物和病毒基因组的特性,从而区分自由生活的微生物和与颗粒相关的微生物。我们发现,在氮的可利用性范围内,与自由生活的细菌和古菌相比,颗粒相关的细菌和古菌的编码蛋白中的氮含量随着深度的增加而显著增加。在每个大小分数内,我们发现细菌和病毒基因组中的氮含量随着深度的增加而与硝酸盐浓度的增加呈正相关。与细胞基因不同,病毒蛋白的氮含量在大小分数之间没有差异。我们发现精氨酸是调节细菌、古菌和病毒核心基因 C:N 比值的关键氨基酸。功能分析表明,颗粒相关的细菌宏基因组富含参与精氨酸代谢和有机氮化合物分解代谢的基因。我们的研究结果表明,在从米到微米的空间尺度上,细胞和病毒基因组都存在氮的简化。这些影响的幅度与之前报道的数千公里尺度上的影响相当。海洋微生物的基因组可以被营养循环所塑造,已知海洋尺度上氮的可利用性梯度会影响微生物的氨基酸使用。然而,在更小的空间尺度上,例如在垂直进入缺氧区(OMZ)或从碎屑颗粒的外部到内部,基因特性是如何受到营养变化的影响的,目前尚不清楚。在这里,我们通过使用来自东热带北太平洋 OMZ 硝氮层的宏基因组,包括颗粒相关和非相关生物量,来测量海洋细菌、古菌和病毒的蛋白质氮利用情况。我们的研究结果表明,在颗粒相关的微生物和氮可利用性较高的深度,细胞和病毒基因组的基因组和蛋白质组的氮含量较高。这一发现表明,化学计量学在多个尺度上影响微生物和病毒的进化,包括与颗粒相关的生活方式和自由生活方式相关的微米到毫米尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32b8/10134851/73eb0107e440/msystems.01095-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验