Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
Nanoscale. 2017 Aug 31;9(34):12432-12440. doi: 10.1039/c7nr03950f.
To promote the practical application of electrochemical energy storage and conversion systems, nonprecious electrocatalysts of low cost and with highly efficient performance in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desired. In this work, a cubic sodium chloride (NaCl) crystal-templated strategy is proposed for coupling CoS nanoparticles to nitrogen- and sulfur-doped carbon nanosheets (CoS/N,S-CNS) by facile pyrolysis. The nitrogen and sulfur dual-doped carbon nanosheets can effectively prevent the aggregation of CoS nanoparticles and greatly improve the conductivity of the hybrid structure. The well-dispersed CoS nanoparticles could provide more active sites. When evaluated as a bifunctional electrocatalyst, an overpotential of 350 mV could yield 10 mA cm current density for OER and a high onset potential around 0.90 V vs. RHE was obtained with a four-electron pathway for ORR, which is comparable to that of a Pt/C catalyst. The remarkable electrochemical performance can be attributed to the synergistic catalytic effect of CoS nanoparticles and the N,S-doped carbon nanosheets. Considering the simplicity, low cost and scalability of the approach, the strategy presented here can be extendable to the preparation of other nanoparticles/carbon hybrid nanosheets, which may potentially be applied in the fields of high-performance supercapacitors, lithium-ion batteries, catalysts, sensors, adsorbents and so on.
为了推动电化学储能和转换系统的实际应用,人们非常希望获得具有成本效益和高效性能的非贵金属电催化剂,用于氧还原反应(ORR)和氧析出反应(OER)。在这项工作中,提出了一种通过简单的热解将 CoS 纳米粒子偶联到氮和硫掺杂碳纳米片(CoS/N,S-CNS)的立方氯化钠(NaCl)晶体模板策略。氮和硫双掺杂碳纳米片可以有效阻止 CoS 纳米粒子的聚集,并大大提高了混合结构的导电性。分散良好的 CoS 纳米粒子可以提供更多的活性位点。当将其作为双功能电催化剂进行评估时,OER 的电流密度为 10 mA cm 时的过电势为 350 mV,并且对于 ORR,在四电子途径下获得了约 0.90 V vs. RHE 的高起始电位,这与 Pt/C 催化剂相当。显著的电化学性能可归因于 CoS 纳米粒子和 N,S 掺杂碳纳米片的协同催化作用。考虑到该方法的简单性、低成本和可扩展性,这里提出的策略可以扩展到制备其他纳米粒子/碳混合纳米片,这可能在高性能超级电容器、锂离子电池、催化剂、传感器、吸附剂等领域具有潜在应用。