Suppr超能文献

手性α-和β-硅氧基、α-卤代和β-乙烯基羰基化合物的螯合控制加成。

Chelation-Controlled Additions to Chiral α- and β-Silyloxy, α-Halo, and β-Vinyl Carbonyl Compounds.

机构信息

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China.

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

出版信息

Acc Chem Res. 2017 Sep 19;50(9):2389-2400. doi: 10.1021/acs.accounts.7b00319. Epub 2017 Aug 15.

Abstract

The science and art of preventing and managing disease and prolonging life is dependent on advances in medicine, biology, and biochemistry. Many of these advances will involve interactions of small molecules with biological entities. As such, they will rely on the efficient synthesis of active compounds with very high stereochemical purity. Although enantioselective reactions are important in this regard, most stereocenters in complex molecule synthesis are installed in diastereoselective reactions. Perhaps the most well-known diastereoselective C-C bond-forming reaction is the addition of nucleophiles to carbonyl groups with α- or β-stereogenic centers. Diastereoselective additions of organometallic reagents to protected chiral α- and β-hydroxy aldehydes and ketones are described by either Cram chelation or Felkin-Anh models, which are protecting group (PG)-dependent. Small PGs (X = OMOM, OBn, etc.) favor Cram chelation, wherein both the carbonyl group and the O-PG bind to the Lewis acidic metal, providing syn diol motifs. In contrast, silyl PGs, with the OSiR moiety being both bulky and weakly coordinating, provide anti diols (Felkin addition). It is well-known that exceptions to this paradigm are scarce. Therefore, the choice of PG is based on the desired stereochemical outcome in the addition step and is often inappropriate for the global protection strategy. Thus, it is critical to develop general methods for chelation-controlled additions of organometallics to chiral silyloxy aldehydes and ketones. Once the challenge of developing chelation-controlled additions to silyloxy carbonyl compounds can be met, the next question is what other pendant functional groups can chelate? Herein we introduce the first general methods for the chelation-controlled addition of organometallics to chiral silyloxy aldehydes and ketones. A wide variety of organozinc reagents have been used in these addition reactions, including dialkylzinc reagents that are commercially available or generated using Knochel's methods. Existing protocols for the generation of (E)-di- and -trisubstituted vinylzinc reagents have been employed, and new methods for the generation of (Z)-di- and -trisubstituted vinylzinc reagents have been developed. The generation of 1,1-heterobimetallic reagents based on boron and zinc has been advanced, and the addition of these reagents to silyloxy aldehydes via chelation-control is included. We will first describe the initial discovery and a model to explain the observed diastereoselectivities. A wide array of chelation-controlled additions to chiral α- and β-silyloxy aldehydes and ketones will then be presented. We next describe other functional groups that undergo chelation-controlled additions. α-Halo aldehyde derivatives are well-known to favor Felkin addition (via the Cornforth-Evans model). We introduce a general method for chelation-controlled additions to α-halo aldimines that provides useful precursors to aziridines. Finally, we provide preliminary evidence that even C═C bonds can play the role of chelating groups in additions to β,γ-unsaturated ketones. The results outlined in this Account redefine the commonly held idea that chiral silyloxy- and halo-substituted carbonyl compounds only give Felkin addition products. The key to achieving chelation control in these reactions is the use of weakly coordinating solvents (dichloromethane and toluene) that do not readily bind to the zinc Lewis acids RZnX.

摘要

预防和控制疾病以及延长寿命的科学和艺术依赖于医学、生物学和生物化学的进步。这些进步中的许多将涉及小分子与生物实体的相互作用。因此,它们将依赖于高效合成具有非常高立体化学纯度的活性化合物。虽然对映选择性反应在这方面很重要,但在复杂分子合成中大多数立体中心是在非对映选择性反应中安装的。也许最著名的非对映选择性 C-C 键形成反应是亲核试剂与具有 α-或 β-手性中心的羰基的加成。保护基(PG)依赖性描述了保护的手性 α-和 β-羟醛和酮的有机金属试剂的非对映选择性加成。Cram 螯合或 Felkin-Anh 模型描述了保护基(PG)依赖性的保护的手性 α-和 β-羟醛和酮的有机金属试剂的非对映选择性加成。小的 PG(X = OMOM、OBn 等)有利于 Cram 螯合,其中羰基和 O-PG 都与路易斯酸性金属结合,提供 syn 二醇基序。相比之下,硅基 PG 具有体积大和弱配位的 OSiR 部分,提供反二醇(Felkin 加成)。众所周知,这种范式的例外情况很少。因此,PG 的选择基于加成步骤中所需的立体化学结果,并且通常不适合全局保护策略。因此,开发用于手性硅氧基醛和酮的螯合控制的有机金属加成的通用方法至关重要。一旦可以解决开发螯合控制的硅氧基羰基化合物加成的挑战,下一个问题是什么其他侧挂官能团可以螯合?在此,我们介绍了用于手性硅氧基醛和酮的螯合控制加成的第一种通用方法。已经在这些加成反应中使用了各种有机锌试剂,包括商业上可用的或使用 Knochel 方法生成的二烷基锌试剂。已经采用了现有用于生成(E)-二取代和 -三取代乙烯基锌试剂的方案,并开发了用于生成(Z)-二取代和 -三取代乙烯基锌试剂的新方法。已经推进了基于硼和锌的 1,1-杂双金属试剂的生成,并且包括螯合控制的通过螯合控制添加到硅氧基醛的这些试剂。我们将首先描述初始发现和解释观察到的非对映选择性的模型。然后将呈现大量的对映选择性添加到手性的 α-和 β-硅氧基醛和酮。我们接下来描述其他经历螯合控制加成的官能团。α-卤代醛衍生物通常有利于 Felkin 加成(通过 Cornforth-Evans 模型)。我们引入了一种用于 α-卤代亚胺的螯合控制加成的通用方法,该方法提供了有用的氮丙啶前体。最后,我们提供了初步证据,即使是 C═C 键也可以在手性硅氧基和卤代取代的羰基化合物的加成中充当螯合基团。本账户中概述的结果重新定义了通常认为的手性硅氧基和卤代取代的羰基化合物仅生成 Felkin 加成产物的观点。在这些反应中实现螯合控制的关键是使用不易与路易斯酸 RZnX 结合的弱配位溶剂(二氯甲烷和甲苯)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验