BNLMS, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.
Sino-Danish Center for Molecular Nanostructures on Surfaces and Interdisciplinary Nanoscience Center, Aarhus University , DK-8000 Aarhus C, Denmark.
ACS Nano. 2017 Sep 26;11(9):9397-9404. doi: 10.1021/acsnano.7b04900. Epub 2017 Aug 17.
To discern the catalytic activity of different active sites, a self-assembly strategy is applied to confine the involved species that are "attached" to specific surface sites. The employed probe reaction system is the Ullmann coupling of 4-bromobiphenyl, CHCHBr, on an atomically flat Ag(111) surface, which is explored by combined scanning tunneling microscopy, synchrotron X-ray photoelectron spectroscopy, and density functional theory calculations. The catalytic cycle involves the detachment of the Br atom from the initial reactant to form an organometallic intermediate, CHCHAgCHCH, which subsequently self-assembles with its central Ag atom residing either on 2-fold bridge or 3-fold hollow sites at full coverage. The hollow site turns out to be catalytically more active than the bridge one, allowing us to achieve site-steered reaction control from the intermediate to the final coupling product, p-quaterphenyl, at 390 and 410 K, respectively.
为了辨别不同活性位的催化活性,采用自组装策略将涉及的物种“约束”在特定的表面位上。所采用的探针反应体系是在原子平坦的 Ag(111)表面上进行的 4-溴联苯,CHCHBr 的 Ullmann 偶联,通过结合扫描隧道显微镜、同步辐射 X 射线光电子能谱和密度泛函理论计算来探索。催化循环包括从初始反应物中脱除 Br 原子以形成有机金属中间体,CHCHAgCHCH,随后其中心 Ag 原子自组装在完全覆盖的 2 重桥位或 3 重空穴位上。空穴位的催化活性比桥位高,这使得我们能够分别在 390 和 410 K 时从中间体到最终偶联产物对三联苯实现位点导向的反应控制。