Suppr超能文献

周期鲁棒模型预测控制在约束连续时间非线性系统中的应用:一种基于事件触发的方法。

Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

出版信息

IEEE Trans Cybern. 2018 May;48(5):1397-1405. doi: 10.1109/TCYB.2017.2695499. Epub 2017 Aug 14.

Abstract

The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

摘要

事件触发控制是网络控制系统、多智能体系统和大规模智能系统等的一种有前途的解决方案。在本文中,我们提出了一种用于具有有界干扰的约束连续时间非线性系统的事件触发模型预测控制(MPC)方案。首先,计算了时变的紧状态约束以实现鲁棒的约束满足,并在双模 MPC 框架内设计了事件触发调度策略。其次,分别开发了确保可行性和闭环鲁棒稳定性的充分条件。结果表明,所提出的 MPC 算法可以确保鲁棒稳定性并降低通信负载。最后,进行了数值模拟和对比研究以验证理论结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验