Ochab-Marcinek Anna, Jędrak Jakub, Tabaka Marcin
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Phys Chem Chem Phys. 2017 Aug 23;19(33):22580-22591. doi: 10.1039/c7cp00743d.
An intuition based on deterministic models of chemical kinetics is that population heterogeneity of transcription factor levels in cells is transmitted unchanged downstream to the target genes. We use a stochastic model of a two-gene cascade with a self-regulating upstream gene to show that, counter to the intuition, there is no simple mapping (bimodal to bimodal, unimodal to unimodal) between the shapes of the distributions of transcription factor numbers and target protein numbers in cells. Due to the presence of the two regulations, the system contains two nonlinear transfer functions, defined by the Hill kinetics of transcription factor binding. The transfer function of the regulator can "interfere" with the transfer function of the target, converting the bimodal input into a unimodal output or vice versa. We show that this effect can be predicted by a geometric construction. As an example application of the method, we present a case study of a system of several downstream genes of different sensitivities, controlled by a common transcription factor which also regulates its own transcription. We show that a single regulator can induce qualitatively different patterns (binary or graded) of responses to a signal in different downstream genes, depending on whether the sensitivity regions of the transfer functions of the upstream and downstream genes overlap or not. Alternatively, the same model can be interpreted as describing a single downstream gene that has different sensitivities in different cell lines due to mutations. Our model shows, therefore, a possible kinetic mechanism by which different genes can interpret the same biological signal in a different manner.
基于化学动力学确定性模型的一种直觉是,细胞中转录因子水平的群体异质性会原封不动地传递到下游的靶基因。我们使用一个具有自调节上游基因的双基因级联随机模型来表明,与这种直觉相反,细胞中转录因子数量分布形状与靶蛋白数量分布形状之间不存在简单的映射关系(双峰到双峰、单峰到单峰)。由于存在这两种调控,该系统包含两个由转录因子结合的希尔动力学定义的非线性传递函数。调节因子的传递函数会“干扰”靶标的传递函数,将双峰输入转换为单峰输出,反之亦然。我们表明这种效应可以通过一种几何构造来预测。作为该方法的一个示例应用,我们给出了一个案例研究,该系统由一个共同的转录因子控制几个不同敏感性的下游基因,该转录因子也调节其自身的转录。我们表明,单个调节因子可以在不同的下游基因中诱导对信号的定性不同模式(二元或分级),这取决于上游和下游基因传递函数的敏感区域是否重叠。或者,相同的模型可以解释为描述单个下游基因,由于突变,其在不同细胞系中具有不同的敏感性。因此,我们的模型展示了一种可能的动力学机制,通过该机制不同的基因可以以不同的方式解读相同的生物信号。