Suppr超能文献

无机-有机ZnCdS-DETA固溶体纳米花的可控合成及其增强的可见光光催化产氢性能。

Controllable synthesis of inorganic-organic ZnCdS-DETA solid solution nanoflowers and their enhanced visible-light photocatalytic hydrogen-production performance.

作者信息

Lv Jiali, Zhang Jinfeng, Dai Kai, Liang Changhao, Zhu Guangping, Wang Zhongliao, Li Zhen

机构信息

College of Physics and Electronic Information, Anhui Key Laboratory of Energetic Materials, Huaibei Normal University, Huaibei, 235000, P. R. China.

出版信息

Dalton Trans. 2017 Aug 29;46(34):11335-11343. doi: 10.1039/c7dt01892d.

Abstract

Sustainable photocatalytic hydrogen evolution (PHE) of water splitting has been utilized to solve the serious environmental pollution and energy shortage problems over the last decade. Inorganic-organic hybrid materials could combine the organic molecules and functional inorganic blocks into unique materials through complicated physical and chemical interactions. In this paper, diethylenetriamine (DETA) was used as an organic molecule template for the synthesis of inorganic-organic ZnCdS-DETA solid solution nanoflowers (NFs) at very low temperature. The obtained ZnCdS-DETA NFs exhibited the highest H production rate (12 718 μmol g h), which is 1.75 times as high as that of CdS-DETA. The suitable conduction band potential and excellent visible-light absorption of ZnCdS-DETA solid solution NFs are closely related to the excellent PHE activity. Furthermore, the calculation on the electronic structure provides a new understanding of the band-gap shifts of the ZnCdS-DETA solid solution hybrids and the design of novel structural photocatalysts.

摘要

在过去十年中,可持续的光催化析氢(PHE)水分解技术已被用于解决严重的环境污染和能源短缺问题。无机-有机杂化材料可以通过复杂的物理和化学相互作用将有机分子和功能性无机块体结合成独特的材料。在本文中,二乙烯三胺(DETA)被用作有机分子模板,在非常低的温度下合成无机-有机ZnCdS-DETA固溶体纳米花(NFs)。所获得的ZnCdS-DETA NFs表现出最高的产氢速率(12718 μmol g h),是CdS-DETA的1.75倍。ZnCdS-DETA固溶体NFs合适的导带电位和优异的可见光吸收与优异的PHE活性密切相关。此外,对电子结构的计算为理解ZnCdS-DETA固溶体杂化物的带隙移动和设计新型结构光催化剂提供了新的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验