Suppr超能文献

使用 CsI 团簇的碎裂和 H˙ 迁移程度作为分子温度计,从更广泛的角度研究行波器件中的离子加热。

A broader view on ion heating in traveling-wave devices using fragmentation of CsI clusters and extent of H˙ migration as molecular thermometers.

机构信息

Biomolecular & Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium.

出版信息

Analyst. 2017 Sep 8;142(18):3388-3399. doi: 10.1039/c7an00161d.

Abstract

Electron transfer dissociation (ETD) is becoming increasingly important in mass spectrometry-based analysis of peptides and proteins. Supplemental collisional activation of undissociated electron transfer products can significantly increase fragmentation yield and sequence coverage, but hydrogen rearrangements - specifically, transfer of a hydrogen radical from a c to a z fragment - lead to distorted isotope distributions and increased potential for signal overlap. Concomitant collisional activation during the ion/ion reaction significantly reduces these rearrangements, but, in ion traps, also leads to lower reaction rates and reduced overlap of anion and cation clouds. In traveling-wave ion mobility devices, it has been reported - although not under ETD conditions - that significant ion activation can occur depending on the T-wave height and velocity. Here, we investigate this phenomenon in more detail using a commercial instrument (Waters Synapt G2) and report that a similar effect can be induced within the traveling-wave Trap cell where the ETD reaction occurs, using fairly typical T-wave settings. This ion 'heating' is demonstrated by analyzing the observed isotope distributions (sensitive to the aforementioned hydrogen rearrangements) of ETD fragments of ubiquitin and substance P. A more detailed investigation of ion activation using cesium iodide clusters (without ETD reagent anions present) shows that the observed behavior is consistent with the known dynamics of ions within traveling-wave devices. The insights gained in this work are potentially relevant both for 'native ETD' studies (in which tuning needs to be optimized to avoid unintentional ion activation) as well as the design of future T-wave ETD devices (where this 'heating' effect might be exploited to promote fragment release).

摘要

电子转移解离(ETD)在基于质谱的肽和蛋白质分析中变得越来越重要。对未解离的电子转移产物进行补充碰撞激活可以显著增加碎片产率和序列覆盖率,但氢重排 - 特别是氢自由基从 c 片段转移到 z 片段 - 会导致扭曲的同位素分布,并增加信号重叠的可能性。在离子/离子反应过程中的伴随碰撞激活显著减少了这些重排,但在离子阱中,也会导致反应速率降低,阴离子和阳离子云的重叠减少。在飞行波离子迁移设备中,据报道 - 尽管不是在 ETD 条件下 - 根据 T 波高度和速度,会发生显著的离子激活。在这里,我们使用商业仪器(Waters Synapt G2)更详细地研究了这一现象,并报告说,在 ETD 反应发生的飞行波阱单元中,可以使用相当典型的 T 波设置来诱导类似的效果。通过分析泛素和物质 P 的 ETD 片段的观察到的同位素分布(对上述氢重排敏感)来证明这种离子“加热”,(观察到的同位素分布更窄)。使用碘化铯簇(没有 ETD 试剂阴离子存在)对离子激活进行更详细的研究表明,观察到的行为与飞行波设备中离子的已知动力学一致。这项工作中获得的见解对于“天然 ETD”研究(需要优化调谐以避免意外的离子激活)以及未来 T 波 ETD 设备的设计(可能会利用这种“加热”效应来促进片段释放)都具有潜在的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验