Suppr超能文献

评估基于 traveling wave 的离子迁移谱分离结构中的碰撞截面校准策略,用于无损离子操控。

Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

出版信息

Anal Chem. 2020 Nov 17;92(22):14976-14982. doi: 10.1021/acs.analchem.0c02829. Epub 2020 Nov 2.

Abstract

The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.

摘要

碰撞截面(CCS)是一个重要的属性,有助于分子的结构特征描述。在这里,我们使用三组校准剂研究了在无损离子操作结构(SLIM)中使用行波离子迁移谱(TWIMS)分离时的 CCS 校准精度。使用两种不同的 TW 波形轮廓(方形和正弦)和幅度(20、25 和 30V),在氮气缓冲气体中对一系列单价负电荷磷脂和胆汁酸进行了校准。使用正弦形 TW 波形,三个校准剂组(安捷伦调谐混合物、多聚丙氨酸和一个内部组装的)的校准误差几乎没有差异。校准误差均在漂移管离子迁移谱(DTIMS)测量值的 1-2%范围内,正弦波形的误差较低,这可能是由于离子经历的平均和最大场较低。最后,超高分辨率多通(长路径长度)SLIM TWIMS 分离显示出对磷脂和胆汁酸异构体的 CCS 校准得到了改善。

相似文献

2
Effect of Traveling Waveform Profiles on Collision Cross Section Measurements in Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2022 May 4;33(5):783-792. doi: 10.1021/jasms.1c00364. Epub 2022 Apr 18.
3
A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry.
Anal Chim Acta. 2022 Sep 15;1226:340236. doi: 10.1016/j.aca.2022.340236. Epub 2022 Aug 15.
4
High-resolution ion mobility based on traveling wave structures for lossless ion manipulation resolves hidden lipid features.
Anal Bioanal Chem. 2024 Oct;416(25):5473-5483. doi: 10.1007/s00216-024-05385-8. Epub 2024 Jun 27.
5
Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2021 Jan 6;32(1):225-236. doi: 10.1021/jasms.0c00282. Epub 2020 Oct 30.
8
Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations.
Anal Chem. 2019 Nov 19;91(22):14712-14718. doi: 10.1021/acs.analchem.9b03987. Epub 2019 Oct 30.

引用本文的文献

1
Multipass CCS Refiner: A Web Application for Accurate Collision Cross Section Calibration in Cyclic Ion Mobility-Mass Spectrometry.
J Am Soc Mass Spectrom. 2025 Sep 3;36(9):2000-2004. doi: 10.1021/jasms.5c00199. Epub 2025 Aug 19.
3
Characterization of Sugammadex-Related Isomeric Cyclodextrin Impurities Using Cyclic Ion Mobility High-Resolution Mass Spectrometry.
J Am Soc Mass Spectrom. 2025 Feb 5;36(2):258-264. doi: 10.1021/jasms.4c00243. Epub 2025 Jan 24.
7
Accurate Collisional Cross Section Measurement by Multipass Cyclic Ion Mobility Spectrometry.
Anal Chem. 2024 Jul 23;96(29):11959-11968. doi: 10.1021/acs.analchem.4c01758. Epub 2024 Jul 11.
8
Exploring the Conformational Landscape of Poly(l-lysine) Dendrimers Using Ion Mobility Mass Spectrometry.
Anal Chem. 2024 Jun 11;96(23):9390-9398. doi: 10.1021/acs.analchem.4c00099. Epub 2024 May 29.
9
Altering Conformational States of Dynamic Ion Populations using Traveling Wave Structures for Lossless Ion Manipulations.
Anal Chem. 2024 Apr 23;96(16):6450-6458. doi: 10.1021/acs.analchem.4c00692. Epub 2024 Apr 11.
10
Collision Cross Section Prediction Based on Machine Learning.
Molecules. 2023 May 12;28(10):4050. doi: 10.3390/molecules28104050.

本文引用的文献

1
Collision Cross Sections of Phosphoric Acid Cluster Anions in Helium Measured by Drift Tube Ion Mobility Mass Spectrometry.
J Am Soc Mass Spectrom. 2020 Apr 1;31(4):969-981. doi: 10.1021/jasms.0c00034. Epub 2020 Mar 10.
4
Validation of Calibration Parameters for Trapped Ion Mobility Spectrometry.
J Am Soc Mass Spectrom. 2019 Oct;30(10):2152-2162. doi: 10.1007/s13361-019-02289-1. Epub 2019 Aug 7.
7
Magnifying ion mobility spectrometry-mass spectrometry measurements for biomolecular structure studies.
Curr Opin Chem Biol. 2018 Feb;42:101-110. doi: 10.1016/j.cbpa.2017.11.013. Epub 2017 Dec 12.
8
The potential of ion mobility-mass spectrometry for non-targeted metabolomics.
Curr Opin Chem Biol. 2018 Feb;42:9-15. doi: 10.1016/j.cbpa.2017.10.015. Epub 2017 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验