Suppr超能文献

在峰列表配准分析和自旋系统分组中检测并考虑位置方差的多个来源。

Detecting and accounting for multiple sources of positional variance in peak list registration analysis and spin system grouping.

作者信息

Smelter Andrey, Rouchka Eric C, Moseley Hunter N B

机构信息

School of Interdisciplinary and Graduate Studies, University of Louisville, Louisville, KY, 40202, USA.

Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40202, USA.

出版信息

J Biomol NMR. 2017 Aug;68(4):281-296. doi: 10.1007/s10858-017-0126-5. Epub 2017 Aug 16.

Abstract

Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.

摘要

源自核磁共振(NMR)光谱的峰列表通常用作各种计算机辅助和自动化分析的输入数据。这些分析包括自动蛋白质共振归属和蛋白质结构计算软件工具。在进行这些分析之前,峰列表必须相互对齐,并且相关峰集必须根据共同的化学位移维度进行分组。即使程序能够执行峰分组,它们也要求用户提供统一的匹配容差或使用默认值。然而,峰位置的多种变化源使峰分组变得更加复杂,限制了利用统一匹配容差的分组方法的有效性。此外,目前还没有从单峰列表中导出峰位置方差以将峰分组为自旋系统的方法,即在单峰列表内进行自旋系统分组。因此,我们开发了一对互补的峰列表配准分析和自旋系统分组算法,旨在克服这些限制。我们已将这些算法实现为一种方法,该方法可以识别单峰列表中存在的多个维度特定的位置方差,并将单峰列表中的峰分组为自旋系统。由此产生的软件工具会生成关于单峰列表和成对峰列表对齐的各种有用统计信息,特别是用于评估峰列表数据集的质量。我们使用了一系列低质量和高质量的实验性溶液NMR和固态NMR峰列表来评估我们的配准分析和分组算法的性能。分析表明,使用单次迭代和统一匹配容差方法的算法由于存在多种变化源,只能找回50%至80%的自旋系统。我们的算法通过在多次迭代中重新评估匹配容差来找回额外的自旋系统。为便于评估这些算法,我们在nmrstarlib软件包中开发了一个峰列表模拟器,它可以从给定的BMRB条目或条目数据库生成用户定义的已归属峰列表。此外,还生成了超过100,000个具有一个或两个变化源的模拟峰列表,以评估这些新的配准分析和峰分组算法的性能和稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c02/5587626/3e216304ce42/10858_2017_126_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验