Suppr超能文献

基于磁共振成像、计算机断层扫描以及正电子发射断层扫描-计算机断层扫描的肺癌放射治疗计划中肿瘤及淋巴结勾画的变异性

Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.

作者信息

Karki Kishor, Saraiya Siddharth, Hugo Geoffrey D, Mukhopadhyay Nitai, Jan Nuzhat, Schuster Jessica, Schutzer Matthew, Fahrner Lester, Groves Robert, Olsen Kathryn M, Ford John C, Weiss Elisabeth

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia; Department of Radiation Oncology, University of Toledo, Toledo, Ohio.

出版信息

Int J Radiat Oncol Biol Phys. 2017 Sep 1;99(1):80-89. doi: 10.1016/j.ijrobp.2017.05.002. Epub 2017 May 6.

Abstract

PURPOSE

To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations.

METHODS AND MATERIALS

Seven physicians delineated the tumor volumes of 10 patients for the following scenarios: (1) CT only, (2) PET-CT fusion images registered to CT ("clinical standard"), and (3) postcontrast T1-weighted MRI registered with diffusion-weighted MRI. To compute interobserver variability, the median surface was generated from all observers' contours and used as the reference surface. A physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest wall) on the median surface. Contoured volumes and bidirectional local distances between individual observers' contours and the reference contour were analyzed.

RESULTS

Computed tomography- and MRI-based tumor volumes normalized relative to PET-CT-based volumes were 1.62 ± 0.76 (mean ± standard deviation) and 1.38 ± 0.44, respectively. Volume differences between the imaging modalities were not significant. Between observers, the mean normalized volumes per patient averaged over all patients varied significantly by a factor of 1.6 (MRI) and 2.0 (CT and PET-CT) (P=4.10 × 10 to 3.82 × 10). The tumor-atelectasis interface had a significantly higher variability than other interfaces for all modalities combined (P=.0006). The interfaces with the smallest uncertainties were tumor-lung (on CT) and tumor-mediastinum (on PET-CT and MRI).

CONCLUSIONS

Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define the tumor volume most accurately.

摘要

目的

利用磁共振成像(MRI)研究不同观察者对原发性肺癌大体肿瘤体积及相关病理淋巴结的勾画变异性,并将结果与单纯计算机断层扫描(CT)及基于正电子发射断层扫描(PET)-CT的勾画结果进行比较。

方法和材料

7名医生针对以下情况勾画了10例患者的肿瘤体积:(1)仅CT;(2)与CT配准的PET-CT融合图像(“临床标准”);(3)与扩散加权MRI配准的增强后T1加权MRI。为计算观察者间的变异性,由所有观察者的轮廓生成中位数表面并用作参考表面。一名医生在中位数表面上标记界面类型(肿瘤与肺、肺不张(塌陷肺)、肺门、纵隔或胸壁)。分析了轮廓体积以及各个观察者轮廓与参考轮廓之间的双向局部距离。

结果

相对于基于PET-CT的体积进行归一化后,基于CT和MRI的肿瘤体积分别为1.62±0.76(平均值±标准差)和1.38±0.44。成像方式之间的体积差异不显著。在观察者之间,所有患者的平均每位患者归一化体积在MRI中相差1.6倍,在CT和PET-CT中相差2.0倍(P = 4.10×10至3.82×10)。对于所有组合方式,肿瘤-肺不张界面的变异性显著高于其他界面(P = 0.0006)。不确定性最小的界面是肿瘤-肺(CT上)以及肿瘤-纵隔(PET-CT和MRI上)。

结论

尽管基于MRI的轮廓勾画总体上比PET-CT显示出更大的变异性,但轮廓勾画变异性取决于界面类型,且尽管观察者对MRI的经验有限,但各方式之间并无显著差异。多模态成像以及结合不同的成像特征可能是最准确界定肿瘤体积的最佳方法。

相似文献

7
Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning.4D FDG-PET/CT 扫描在放射治疗计划中的临床应用。
Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):e99-105. doi: 10.1016/j.ijrobp.2010.12.060. Epub 2011 Mar 4.

引用本文的文献

本文引用的文献

3
Contribution of MRI in lung cancer staging.MRI在肺癌分期中的作用。
JBR-BTR. 2013 May-Jun;96(3):132-41. doi: 10.5334/jbr-btr.234.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验