IEEE Trans Image Process. 2017 Nov;26(11):5491-5505. doi: 10.1109/TIP.2017.2740620. Epub 2017 Aug 16.
This paper investigates into the colorization problem, which converts a grayscale image to a colorful version. This is a difficult problem and normally requires manual adjustment to achieve artifact-free quality. For instance, it normally requires human-labeled color scribbles on the grayscale target image or a careful selection of colorful reference images. The recent learning-based colorization techniques automatically colorize a grayscale image using a single neural network. Since different scenes usually have distinct color styles, it is difficult to accurately capture the color characteristics using a single neural network. We propose a mixture learning model representing the presence of sub-color-style within an overall image data set. We, therefore, ensemble multiple neural networks to obtain better color estimation performance than could be obtained from any of the constituent neural network alone. A two-step colorization strategy is utilized as an adaptive color style clustering followed by a neural network ensemble. To ensure artifact-free quality, a joint bilateral filtering-based post-processing step is proposed. Numerous experiments demonstrate that our method generates high-quality results comparable with state-of-the-art algorithms.
本文研究了颜色化问题,即将灰度图像转换为彩色版本。这是一个难题,通常需要手动调整才能达到无伪影的质量。例如,通常需要在灰度目标图像上进行人工标记的颜色涂鸦,或者仔细选择彩色参考图像。最近基于学习的颜色化技术使用单个神经网络自动对灰度图像进行颜色化。由于不同的场景通常具有不同的颜色风格,因此很难使用单个神经网络准确地捕捉颜色特征。我们提出了一种混合学习模型,该模型表示整体图像数据集内存在子颜色风格。因此,我们集成了多个神经网络,以获得比任何单个神经网络单独获得的更好的颜色估计性能。我们使用两步颜色化策略作为自适应颜色风格聚类,然后是神经网络集成。为了确保无伪影的质量,我们提出了基于联合双边滤波的后处理步骤。大量实验表明,我们的方法生成的结果质量与最先进的算法相当。