Suppr超能文献

软平行板阵列的定向屈曲切割用于多功能性。

Cuts Guided Deterministic Buckling in Arrays of Soft Parallel Plates for Multifunctionality.

机构信息

Applied Mechanics of Materials Laboratory, Department of Mechanical Engineering, Temple University , 1947 North 12th Street, Philadelphia, Pennsylvania 19122, United States.

Department of Materials Science and Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 30;9(34):29345-29354. doi: 10.1021/acsami.7b09466. Epub 2017 Aug 17.

Abstract

Harnessing buckling instability in soft materials offers an effective strategy to achieve multifunctionality. Despite great efforts in controlling the wrinkling behaviors of film-based systems and buckling of periodic structures, the benefits of classical plate buckling in soft materials remain largely unexplored. The challenge lies in the intrinsic indeterminate characteristics of buckling, leading to geometric frustration and random orientations. Here, we report the controllable global order in constrained buckling of arrays of parallel plates made of hydrogels and elastomers on rigid substrates. By introducing patterned cuts on the plates, the randomly phase-shifted buckling in the array of parallel plates transits to a prescribed and ordered buckling with controllable phases. The design principle for cut-directed deterministic buckling in plates is validated by both mechanics model and finite element simulation. By controlling the contacts and interactions between the buckled parallel plates, we demonstrate on-demand reconfigurable electrical and optical pathways, and the potential application in design of mechanical logic gates. By varying the local stimulus within the plates, we demonstrate that microscopic pathways can be written, visualized, erased, and rewritten macroscopically into a completely new one for potential applications such as soft reconfigurable circuits and logic devices.

摘要

利用软物质中的屈曲失稳提供了实现多功能性的有效策略。尽管在控制基于薄膜系统的褶皱行为和周期性结构的屈曲方面做出了巨大努力,但软物质中经典板屈曲的优势在很大程度上仍未得到探索。挑战在于屈曲的固有不定性特征,导致几何上的挫折和随机取向。在这里,我们报告了在刚性基底上的水凝胶和弹性体组成的平行板阵列的受限屈曲中可控的全局有序性。通过在板上引入图案化切口,可以将平行板阵列中随机相移的屈曲转变为具有可控相的规定和有序的屈曲。通过力学模型和有限元模拟验证了用于定向屈曲的设计原理。通过控制屈曲平行板之间的接触和相互作用,我们展示了按需可重构的电和光通路,以及在机械逻辑门设计中的潜在应用。通过改变板内的局部刺激,我们证明可以在微观层面上写入、可视化、擦除和重新写入宏观上的全新路径,用于软可重构电路和逻辑器件等潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验