Suppr超能文献

Disposition and biotransformation of quinpirole, a new D-2 dopamine agonist antihypertensive agent, in mice, rats, dogs, and monkeys.

作者信息

Whitaker N G, Lindstrom T D

出版信息

Drug Metab Dispos. 1987 Jan-Feb;15(1):107-13.

PMID:2881745
Abstract

The disposition and metabolism of quinpirole were studied in rats, mice, dogs, and monkeys. A single 2 mg/kg dose of 14C-quinpirole was administered orally to rats, mice, and monkeys. Dogs were given a single 0.2 mg/kg iv dose of 14C-quinpirole. Of the dose administered, 75-96% was recovered in the urine within 72 hr, with the majority being excreted during the first 24 hr. Peak plasma concentrations of radioactivity and quinpirole were coincident and were observed within 0.25 hr in rodents and at 2 hr in monkeys. Unchanged quinpirole accounted for 0.9%, 36%, and 69% respectively. Biotransformation of quinpirole was compared by quantitating the urinary metabolites by HPLC. The percentage of the radioactivity in urine representing unchanged drug was determined for each species: monkey (3%), dog (13%), mouse (40%), and rat (57%). The majority of 14C-quinpirole was shown to be biotransformed in rats, mice, and monkeys through common metabolic pathways but to various extents. Most metabolites resulted from structural alterations (N-dealkylation, lactam formation, omega and omega-1 hydroxylation) that centered around the piperidine ring portion of the molecule. These metabolites were less important in dogs. The major metabolic pathway in dogs involved hydroxylation of a methylene carbon adjacent to the pyrazole nucleus of quinpirole followed by O-glucuronidation. Evidence of metabolism of the pyrazole moiety was found in the isolation of an N-glucuronide conjugate of quinpirole from monkey urine.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验