Suppr超能文献

重新审视蛋白质缔合中的流体动力转向:相当大的扭矩产生的影响出人意料地微小。

Hydrodynamic Steering in Protein Association Revisited: Surprisingly Minuscule Effects of Considerable Torques.

机构信息

Department of Biophysics, Faculty of Physics, University of Warsaw , Żwirki i Wigury 93, Warsaw 02-089, Poland.

Faculty of Physics, University of Warsaw , Pasteura 5, Warsaw 02-093, Poland.

出版信息

J Phys Chem B. 2017 Sep 14;121(36):8475-8491. doi: 10.1021/acs.jpcb.7b06053. Epub 2017 Aug 30.

Abstract

We investigate the previously postulated hydrodynamic steering phenomenon, resulting from complication of molecular shapes, its magnitude and possible relevance for protein-ligand and protein-protein diffusional encounters, and the kinetics of diffusion-controlled association. We consider effects of hydrodynamic interactions in a prototypical model system consisting of a cleft enzyme and an elongated substrate, and real protein-protein complexes, that of barnase and barstar, and human growth hormone and its binding protein. The kinetics of diffusional encounters is evaluated on the basis of rigid-body Brownian dynamics simulations in which hydrodynamic interactions between molecules are modeled using the bead-shell method for detailed description of molecular surfaces, and the first-passage-time approach. We show that magnitudes of steering torques resulting from the hydrodynamic coupling of associating molecules, evaluated for the studied systems on the basis of the Stokes-Einstein type relations for arbitrarily shaped rigid bodies, are comparable with magnitudes of torques resulting from electrostatic interactions of binding partners. Surprisingly, however, unlike in the case of electrostatic torques that strongly affect the diffusional encounter, overall effects of hydrodynamic steering torques on the association kinetics, while clearly discernible in Brownian dynamics simulations, are rather minute. We explain this result as a consequence of the thermal agitation of the binding partners. Our finding is relevant for the general understanding of a wide spectrum of molecular processes in solution but there is also a more practical aspect to it if one considers the low level of shape detail of models that are usually employed to evaluate hydrodynamic interactions in particle-based Stokesian and Brownian dynamics simulations of multicomponent biomolecular systems. Results described in the current work justify, in part at least, such a low-resolution description.

摘要

我们研究了先前假设的由于分子形状复杂化而产生的流体动力转向现象,其大小以及对蛋白质配体和蛋白质-蛋白质扩散遭遇和扩散控制缔合的动力学的可能相关性。我们考虑了在由裂缝酶和细长底物组成的典型模型系统以及真实蛋白质-蛋白质复合物(即 barnase 和 barstar 以及人生长激素及其结合蛋白)中流体动力相互作用的影响。基于刚性体布朗动力学模拟评估扩散遭遇的动力学,其中使用珠壳方法对分子表面进行详细描述,并使用首次通过时间方法对分子之间的流体动力相互作用进行建模。我们表明,根据任意形状刚性体的 Stokes-Einstein 类型关系,从流体动力耦合的缔合分子评估的转向扭矩的大小,与结合伴侣的静电相互作用产生的扭矩的大小相当。然而,令人惊讶的是,与强烈影响扩散遭遇的静电扭矩不同,尽管在布朗动力学模拟中可以清楚地分辨出流体动力转向扭矩对缔合动力学的总体影响,但实际上非常微小。我们将这一结果解释为结合伴侣热振动的结果。我们的发现与溶液中广泛的分子过程的一般理解有关,但如果考虑到在基于粒子的 Stokesian 和布朗动力学模拟中评估多组分生物分子系统的流体动力相互作用时通常使用的模型的形状细节水平较低,那么这一发现也具有更实际的意义。当前工作的结果至少部分证明了这种低分辨率描述的合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验