Suppr超能文献

粘着斑激酶F1结构域的C末端区域与Akt1结合并抑制压力诱导的细胞粘附。

The C-terminal region of the focal adhesion kinase F1 domain binds Akt1 and inhibits pressure-induced cell adhesion.

作者信息

Basson M D, Zeng B, Wang S

机构信息

Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.

出版信息

J Physiol Pharmacol. 2017 Jun;68(3):375-383.

Abstract

Increased extracellular pressure or shear stress activate a complex signal pathway that stimulates integrin binding affinity and potentiates metastatic cell adhesion. Inhibiting either focal adhesion kinase (FAK) and Akt1 can block this pathway, but risks interfering with the diverse other functions of each kinase. However, the mechanotransduced signal pathway involves a novel Akt1-FAK interaction not required for most FAK or Akt1 function, so modeling and blocking this interaction seems a desirable target. Building upon previous work suggesting that FAK-Akt1 binding is mediated by the FAK F1 lobe, we demonstrated that independently expressing the F1 domain in human Caco-2 or murine CT-26 colon cancer cells by transient or stable inducible plasmid expression respectively prevents the stimulation of cancer cell adhesion by increased extracellular pressure. Serial further truncation of the FAK F1 lobe identified shorter regions capable of pulling down Akt1 on a glutathione S-transferase (GST) - conjugated column. Ultimately, we identified a 33 residue segment (residues 94-126) at the C-terminal of the F1 lobe as sufficient to pull down Akt1. These findings raise the possibility of developing a treatment modality around the disruption of the FAK-Akt1 interaction using peptides modeled from FAK.

摘要

细胞外压力增加或剪切应力激活复杂的信号通路,刺激整合素结合亲和力并增强转移性细胞黏附。抑制黏着斑激酶(FAK)或Akt1均可阻断此通路,但存在干扰各激酶其他多种功能的风险。然而,机械转导信号通路涉及一种FAK与Akt1的新型相互作用,这种相互作用在大多数FAK或Akt1功能中并非必需,因此模拟并阻断这种相互作用似乎是一个理想的靶点。基于先前表明FAK与Akt1结合由FAK F1叶介导的研究工作,我们分别通过瞬时或稳定诱导质粒表达在人Caco-2或小鼠CT-26结肠癌细胞中独立表达F1结构域,结果显示可防止细胞外压力增加对癌细胞黏附的刺激。对FAK F1叶进行一系列进一步截短,确定了能够在谷胱甘肽S-转移酶(GST)偶联柱上拉下Akt1的较短区域。最终,我们确定F1叶C末端的一个33个残基的片段(第94 - 126位残基)足以拉下Akt1。这些发现增加了利用基于FAK构建的肽破坏FAK与Akt1相互作用来开发一种治疗方式的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验