KU Leuven , Department of Chemistry, Faculty of Science, B-3001 Leuven, Belgium.
Imec , Kapeldreef 75, B-3001 Leuven, Belgium.
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):31031-31041. doi: 10.1021/acsami.7b07811. Epub 2017 Aug 30.
Integrating bottom-up area-selective building-blocks in microelectronics has a disruptive potential because of the unique capability of engineering new structures and architectures. Atomic layer deposition (ALD) is an enabling technology, yet understanding the surfaces and their modification is crucial to leverage area-selective ALD (AS-ALD) in this field. The understanding of general selectivity mechanisms and the compatibility of plasma surface modifications with existing materials and processes, both at research and production scale, will greatly facilitate AS-ALD integration in microelectronics. The use of self-assembled monolayers to inhibit the nucleation and growth of ALD films is still scarcely compatible with nanofabrication because of defectivity and downscaling limitations. Alternatively, in this Research Article, we demonstrate a straightforward H plasma surface modification process capable of inhibiting Ru ALD nucleation on an amorphous carbon surface while still allowing instantaneous nucleation and linear growth on Si-containing materials. Furthermore, we demonstrate how AS-ALD enables previously inaccessible routes, such as bottom-up electroless metal deposition in a dual damascene etch-damage free low-k replacement scheme. Specifically, our approach offers a general strategy for scalable ultrafine 3D nanostructures without the burden of subtractive metal patterning and high cost chemical mechanical planarization processes.
在微电子学中,采用自下而上的区域选择性构建块具有颠覆性的潜力,因为它具有工程新型结构和架构的独特能力。原子层沉积(ALD)是一种使能技术,但要利用该技术在该领域实现区域选择性 ALD(AS-ALD),了解表面及其改性至关重要。在研究和生产规模上,了解一般选择性机制以及等离子体表面改性与现有材料和工艺的兼容性,将极大地促进 AS-ALD 在微电子学中的集成。由于存在缺陷和缩小尺寸的限制,使用自组装单分子层来抑制 ALD 薄膜的成核和生长仍然与纳米制造不太兼容。相比之下,在这篇研究文章中,我们展示了一种简单的 H 等离子体表面改性工艺,能够抑制非晶碳表面上 Ru ALD 的成核,同时仍然允许 Si 含材料上的瞬时成核和线性生长。此外,我们展示了 AS-ALD 如何能够实现以前无法实现的途径,例如在双大马士革刻蚀无损低 k 替代方案中进行自下而上的无电镀金属沉积。具体来说,我们的方法提供了一种通用的策略,用于可扩展的超细 3D 纳米结构,而无需进行减法金属图案化和高成本的化学机械平面化工艺的负担。