University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Aškerčeva 12, 1000 Ljubljana, Slovenia.
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Carbohydr Polym. 2017 Oct 15;174:677-687. doi: 10.1016/j.carbpol.2017.06.124. Epub 2017 Jul 3.
A stimuli-responsive cotton fabric was designed using temperature and pH-responsive poly-N-isopropylacrylamide (poly-NiPAAm) and chitosan (PNCS) microgel as a carrier of antimicrobially active 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (Si-QAC), which forms a bio-barrier on the fibre surface. The influence of Si-QAC on the moisture management and thermoregulation abilities of the PNCS microgel was investigated. Using a pad-dry cure method, Si-QAC was applied to a 100% cotton fabric model in concentrations ranging from 0.05-4% to determine the antimicrobial activity of Si-QAC against two types of bacteria, gram-positive Staphylococcus aureus and gram-negative Escherichia coli. Based on these results, three different concentrations of Si-QAC were selected (0.5, 2 and 4%) and tested with in situ embedment of the agent into PNCS microgel particles for further functionalization of the cotton fabric. The functional properties of the studied samples were assessed by measuring the moisture content, water vapour transmission rate, water uptake and antibacterial activity, and FT-IR and SEM were used to study the chemical and morphological properties of the fibres. The results show that regardless of the concentration, the presence of Si-QAC caused a reduction in the change in the volume of the PNCS microgel particles under conditions that would normally cause swelling. Accordingly, the moisture management and thermoregulation properties of the PNCS microgel were best preserved when the lowest Si-QAC concentration (0.5%) was used. Despite the low concentration, at the conditions required, enough Si-QAC was released from the microgel particles onto the surface of the fibres to form a bio-barrier with excellent antimicrobial activity.
采用温敏型和酸敏型聚 N-异丙基丙烯酰胺(poly-NiPAAm)和壳聚糖(PNCS)微凝胶作为具有抗菌活性的 3-(三甲氧基硅基)丙基二甲基十八烷基氯化铵(Si-QAC)的载体,设计了一种对刺激响应的棉织物,在纤维表面形成生物屏障。研究了 Si-QAC 对 PNCS 微凝胶的水分管理和温度调节能力的影响。采用轧烘焙固色法,将 Si-QAC 以 0.05-4%的浓度应用于 100%棉织物模型,以确定 Si-QAC 对两种细菌(革兰氏阳性的金黄色葡萄球菌和革兰氏阴性的大肠杆菌)的抗菌活性。基于这些结果,选择了三种不同浓度的 Si-QAC(0.5、2 和 4%),并将其与 PNCS 微凝胶颗粒中的原位嵌入剂一起进行测试,以进一步对棉织物进行功能化。通过测量水分含量、水蒸气透过率、吸水率和抗菌活性来评估研究样品的功能特性,同时使用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)来研究纤维的化学和形态特性。结果表明,无论浓度如何,Si-QAC 的存在都会导致 PNCS 微凝胶颗粒的体积变化在通常会导致膨胀的条件下减小。因此,当使用最低浓度的 Si-QAC(0.5%)时,PNCS 微凝胶的水分管理和温度调节性能得到了最好的保留。尽管浓度较低,但在所需条件下,仍有足够的 Si-QAC 从微凝胶颗粒释放到纤维表面,形成具有优异抗菌活性的生物屏障。