Department of Computer Science, Bharathiar University, Coimbatore, 641046, Tamilnadu, India.
Sci Rep. 2017 Aug 18;7(1):8833. doi: 10.1038/s41598-017-09499-1.
This research work focus on the multiple sequence alignment, as developing an exact multiple sequence alignment for different protein sequences is a difficult computational task. In this research, a hybrid algorithm named Bacterial Foraging Optimization-Genetic Algorithm (BFO-GA) algorithm is aimed to improve the multi-objectives and carrying out measures of multiple sequence alignment. The proposed algorithm employs multi-objectives such as variable gap penalty minimization, maximization of similarity and non-gap percentage. The proposed BFO-GA algorithm is measured with various MSA methods such as T-Coffee, Clustal Omega, Muscle, K-Align, MAFFT, GA, ACO, ABC and PSO. The experiments were taken on four benchmark datasets such as BAliBASE 3.0, Prefab 4.0, SABmark 1.65 and Oxbench 1.3 databases and the outcomes prove that the proposed BFO-GA algorithm obtains better statistical significance results as compared with the other well-known methods. This research study also evaluates the practicability of the alignments of BFO-GA by applying the optimal sequence to predict the phylogenetic tree by using ClustalW2 Phylogeny tool and compare with the existing algorithms by using the Robinson-Foulds (RF) distance performance metric. Lastly, the statistical implication of the proposed algorithm is computed by using the Wilcoxon Matched-Pair Signed- Rank test and also it infers better results.
这项研究工作专注于多序列比对,因为开发不同蛋白质序列的精确多序列比对是一项具有挑战性的计算任务。在这项研究中,我们旨在提出一种名为细菌觅食优化-遗传算法(BFO-GA)的混合算法,以改进多目标和执行多序列比对的措施。所提出的算法采用多目标,例如可变间隙罚分最小化、相似性最大化和非间隙百分比最大化。所提出的 BFO-GA 算法通过各种 MSA 方法进行了测量,例如 T-Coffee、Clustal Omega、Muscle、K-Align、MAFFT、GA、ACO、ABC 和 PSO。实验在四个基准数据集上进行,例如 BAliBASE 3.0、Prefab 4.0、SABmark 1.65 和 Oxbench 1.3 数据库,结果证明与其他知名方法相比,所提出的 BFO-GA 算法获得了更好的统计显着性结果。本研究还通过使用 ClustalW2 Phylogeny 工具将最佳序列应用于预测系统发育树,来评估 BFO-GA 比对的实用性,并通过使用 Robinson-Foulds(RF)距离性能指标与现有算法进行比较。最后,通过使用 Wilcoxon 匹配对符号秩检验计算了所提出算法的统计意义,并推断出了更好的结果。