Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States; The Pennsylvania State University, 101 Brezeale Nuclear Reactor, University Park, PA 16802, United States.
Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States.
Sci Total Environ. 2018 Jan 1;610-611:511-520. doi: 10.1016/j.scitotenv.2017.08.122. Epub 2017 Aug 17.
Understanding sorption and desorption processes is essential to predicting the mobility of radionuclides in the environment. We investigate adsorption/desorption of cesium in both binary (Cs+one mineral) and ternary (Cs+two minerals) experiments to study component additivity and sorption reversibility over long time periods (500days). Binary Cs sorption experiments were performed with illite, montmorillonite, and kaolinite in a 5mM NaCl/0.7mM NaHCO3 solution (pH8) and Cs concentration range of 10 to 10M. The binary sorption experiments were followed by batch desorption experiments. The sorption behavior was modeled with the FIT4FD code and the results used to predict desorption behavior. Sorption to montmorillonite and kaolinite was linear over the entire concentration range but sorption to illite was non-linear, indicating the presence of multiple sorption sites. Based on the 14day batch desorption data, cesium sorption appeared irreversible at high surface loadings in the case of illite but reversible at all concentrations for montmorillonite and kaolinite. A novel experimental approach, using a dialysis membrane, was adopted in the ternary experiments, allowing investigation of the effect of a second mineral on Cs desorption from the original mineral. Cs was first sorbed to illite, montmorillonite or kaolinite, then a 3.5-5kDalton Float-A-Lyzer® dialysis bag with 0.3g of illite was introduced to each experiment inducing desorption. Nearly complete Cs desorption from kaolinite and montmorillonite was observed over the experiment, consistent with our equilibrium model, indicating complete Cs desorption from these minerals. Results from the long-term ternary experiments show significantly greater Cs desorption compared to the binary desorption experiments. Approximately ~45% of Cs desorbed from illite. However, our equilibrium model predicted ~65% desorption. Importantly, the data imply that in some cases, slow desorption kinetics rather than permanent fixation may play an important role in apparent irreversible Cs sorption.
理解吸附和解吸过程对于预测环境中放射性核素的迁移性至关重要。我们在二元(Cs+一种矿物)和三元(Cs+两种矿物)实验中研究了铯的吸附/解吸,以研究成分加和性和长时间(500 天)内的吸附可逆性。在 5mM NaCl/0.7mM NaHCO3 溶液(pH8)和 Cs 浓度范围为 10 到 10M 的条件下,用伊利石、蒙脱石和高岭石进行二元 Cs 吸附实验。二元吸附实验后进行批处理解吸实验。使用 FIT4FD 代码对吸附行为进行建模,并使用结果预测解吸行为。蒙脱石和高岭石的吸附行为在整个浓度范围内呈线性,但伊利石的吸附行为呈非线性,表明存在多个吸附位。根据 14 天批处理解吸数据,在伊利石高表面负载下,铯吸附似乎是不可逆的,但在蒙脱石和高岭石的所有浓度下都是可逆的。在三元实验中,采用了一种新颖的实验方法,使用透析膜,研究了第二种矿物对原始矿物中 Cs 解吸的影响。首先将 Cs 吸附到伊利石、蒙脱石或高岭石上,然后向每个实验中引入一个带有 0.3g 伊利石的 3.5-5kDalton Float-A-Lyzer®透析袋,以诱导解吸。在整个实验过程中,从高岭石和蒙脱石中观察到几乎完全的 Cs 解吸,与我们的平衡模型一致,表明这些矿物中完全的 Cs 解吸。长期三元实验的结果表明,与二元解吸实验相比,Cs 的解吸明显增加。约有 45%的 Cs 从伊利石中解吸。然而,我们的平衡模型预测了 65%的解吸。重要的是,这些数据表明,在某些情况下,缓慢的解吸动力学而不是永久固定可能在放射性核素的表观不可逆吸附中发挥重要作用。