Suppr超能文献

阿尔茨海默病的遗传学:多基因和上位性成分的重要性

Genetics of Alzheimer's Disease: the Importance of Polygenic and Epistatic Components.

作者信息

Raghavan Neha, Tosto Giuseppe

机构信息

The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street PH 19-314, New York, NY, 10032, USA.

Department of Neurology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, 10032, USA.

出版信息

Curr Neurol Neurosci Rep. 2017 Aug 21;17(10):78. doi: 10.1007/s11910-017-0787-1.

Abstract

PURPOSE OF REVIEW

We aimed to summarize the recent advances in genetic findings of Alzheimer's disease (AD), focusing on traditional single-marker and gene approaches and non-traditional ones, i.e., polygenic and epistatic components.

RECENT FINDINGS

Genetic studies have progressed over the last few decades from linkage to genome-wide association studies (GWAS), and most recently studies utilizing high-throughput sequencing. So far, GWASs have identified several common variants characterized by small effect sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in the existence of polygenic and epistatic components. We review findings achieved by single-marker approaches, but also polygenic and epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved in complex diseases are likely regulated by mechanisms and pathways involving many other genes, an aspect potentially missed by traditional approaches.

摘要

综述目的

我们旨在总结阿尔茨海默病(AD)基因研究的最新进展,重点关注传统的单标记和基因方法以及非传统方法,即多基因和上位性成分。

最新发现

在过去几十年中,基因研究已从连锁分析发展到全基因组关联研究(GWAS),最近又发展到利用高通量测序的研究。到目前为止,GWAS已经鉴定出几个效应量较小的常见变异(除了APOE-ε4)。测序有助于对效应较大的罕见变异进行研究。然而,AD的遗传力缺失仍然广泛存在;一个可能的解释可能在于多基因和上位性成分的存在。我们回顾了通过单标记方法以及多基因和上位性关联所取得的发现。后两者是关键但尚未充分探索的机制。复杂疾病相关基因可能受涉及许多其他基因的机制和途径调控,而这是传统方法可能遗漏的一个方面。

相似文献

1
Genetics of Alzheimer's Disease: the Importance of Polygenic and Epistatic Components.
Curr Neurol Neurosci Rep. 2017 Aug 21;17(10):78. doi: 10.1007/s11910-017-0787-1.
2
Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer's disease.
Neurobiol Aging. 2013 Apr;34(4):1309.e1-7. doi: 10.1016/j.neurobiolaging.2012.08.010. Epub 2012 Oct 1.
4
Lessons from genome-wide association studies findings in Alzheimer's disease.
Psychogeriatrics. 2012 Mar;12(1):62-73. doi: 10.1111/j.1479-8301.2011.00378.x. Epub 2011 Oct 27.
5
Genome-wide analysis of genetic predisposition to Alzheimer's disease and related sex disparities.
Alzheimers Res Ther. 2019 Jan 12;11(1):5. doi: 10.1186/s13195-018-0458-8.
6
Genome-wide epistasis analysis for Alzheimer's disease and implications for genetic risk prediction.
Alzheimers Res Ther. 2021 Mar 4;13(1):55. doi: 10.1186/s13195-021-00794-8.
7
Novel Alzheimer's disease genes and epistasis identified using machine learning GWAS platform.
Sci Rep. 2023 Oct 17;13(1):17662. doi: 10.1038/s41598-023-44378-y.
8
A novel approach for multi-SNP GWAS and its application in Alzheimer's disease.
BMC Bioinformatics. 2016 Jul 25;17 Suppl 7(Suppl 7):268. doi: 10.1186/s12859-016-1093-7.
9
Progress in Polygenic Composite Scores in Alzheimer's and Other Complex Diseases.
Trends Genet. 2019 May;35(5):371-382. doi: 10.1016/j.tig.2019.02.005. Epub 2019 Mar 25.
10
Genomic variants, genes, and pathways of Alzheimer's disease: An overview.
Am J Med Genet B Neuropsychiatr Genet. 2017 Jan;174(1):5-26. doi: 10.1002/ajmg.b.32499.

引用本文的文献

1
Shorter Telomere Length in Individuals with Neurocognitive Disorder and ε4 Genotype.
Int J Mol Sci. 2025 May 10;26(10):4577. doi: 10.3390/ijms26104577.
3
Complex regulatory interactions at shape joint morphology and osteoarthritis disease risk.
bioRxiv. 2024 Nov 1:2024.11.01.621374. doi: 10.1101/2024.11.01.621374.
5
Genetic diversity promotes resilience in a mouse model of Alzheimer's disease.
Alzheimers Dement. 2024 Apr;20(4):2794-2816. doi: 10.1002/alz.13753. Epub 2024 Mar 1.
7
Machine Learning Models of Polygenic Risk for Enhanced Prediction of Alzheimer Disease Endophenotypes.
Neurol Genet. 2024 Jan 10;10(1):e200120. doi: 10.1212/NXG.0000000000200120. eCollection 2024 Feb.
8
c-Diadem: a constrained dual-input deep learning model to identify novel biomarkers in Alzheimer's disease.
BMC Med Genomics. 2023 Oct 13;16(Suppl 2):244. doi: 10.1186/s12920-023-01675-9.
9
The role of structural variations in Alzheimer's disease and other neurodegenerative diseases.
Front Aging Neurosci. 2023 Feb 8;14:1073905. doi: 10.3389/fnagi.2022.1073905. eCollection 2022.
10
TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1179-D1187. doi: 10.1093/nar/gkac821.

本文引用的文献

1
Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score.
PLoS Med. 2017 Mar 21;14(3):e1002258. doi: 10.1371/journal.pmed.1002258. eCollection 2017 Mar.
2
Polygenic risk scores in familial Alzheimer disease.
Neurology. 2017 Mar 21;88(12):1180-1186. doi: 10.1212/WNL.0000000000003734. Epub 2017 Feb 17.
3
Recent Progress in Alzheimer's Disease Research, Part 2: Genetics and Epidemiology.
J Alzheimers Dis. 2017;57(2):317-330. doi: 10.3233/JAD-161149.
4
Transethnic genome-wide scan identifies novel Alzheimer's disease loci.
Alzheimers Dement. 2017 Jul;13(7):727-738. doi: 10.1016/j.jalz.2016.12.012. Epub 2017 Feb 7.
5
Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease.
PLoS Genet. 2016 Oct 20;12(10):e1006327. doi: 10.1371/journal.pgen.1006327. eCollection 2016 Oct.
6
Polygenic score prediction captures nearly all common genetic risk for Alzheimer's disease.
Neurobiol Aging. 2017 Jan;49:214.e7-214.e11. doi: 10.1016/j.neurobiolaging.2016.07.018. Epub 2016 Aug 5.
7
Polygenic risk of Alzheimer disease is associated with early- and late-life processes.
Neurology. 2016 Aug 2;87(5):481-8. doi: 10.1212/WNL.0000000000002922. Epub 2016 Jul 6.
8
Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease.
J Alzheimers Dis. 2016 Jun 18;53(3):921-32. doi: 10.3233/JAD-150749.
9
Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology.
Mol Psychiatry. 2017 Jun;22(6):874-883. doi: 10.1038/mp.2016.59. Epub 2016 Apr 26.
10
Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer's disease data set.
Neurobiol Aging. 2016 Jun;42:217.e7-217.e13. doi: 10.1016/j.neurobiolaging.2016.03.009. Epub 2016 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验