Palomino Robert M, Ramírez Pedro J, Liu Zongyuan, Hamlyn Rebecca, Waluyo Iradwikanari, Mahapatra Mausumi, Orozco Ivan, Hunt Adrian, Simonovis Juan P, Senanayake Sanjaya D, Rodriguez José A
Chemistry Division, Brookhaven National Laboratory , Upton, New York 11973, United States.
Facultad de Ciencias, Universidad Central de Venezuela , Caracas 1020-A, Venezuela.
J Phys Chem B. 2018 Jan 18;122(2):794-800. doi: 10.1021/acs.jpcb.7b06901. Epub 2017 Aug 30.
The results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO-copper interface in the generation of CO and the synthesis of methanol from CO hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ < 0.3 monolayer, produces highly active catalysts. The catalytic activity of these systems increases in the sequence: Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100). The structure of the copper substrate influences the catalytic performance of a ZnO-copper interface. Furthermore, size and metal-oxide interactions affect the chemical and catalytic properties of the oxide making the supported nanoparticles different from bulk ZnO. The formation of a ZnO-copper interface favors the binding and conversion of CO into a formate intermediate that is stable on the catalyst surface up to temperatures above 500 K. Alloys of Zn with Cu(111) and Cu(100) were not stable at the elevated temperatures (500-600 K) used for the CO hydrogenation reaction. Reaction with CO oxidized the zinc, enhancing its stability over the copper substrates.
动力学测试和常压X射线光电子能谱(AP-XPS)的结果表明,ZnO-铜界面在CO生成以及由CO加氢合成甲醇过程中发挥着重要作用。在Cu(100)和Cu(111)上沉积θ<0.3单层的ZnO纳米颗粒,可制备出高活性催化剂。这些体系的催化活性按以下顺序增加:Cu(111) < Cu(100) < ZnO/Cu(111) < ZnO/Cu(100)。铜基底的结构会影响ZnO-铜界面的催化性能。此外,尺寸和金属-氧化物相互作用会影响氧化物的化学和催化性质,使得负载的纳米颗粒不同于块状ZnO。ZnO-铜界面的形成有利于CO结合并转化为甲酸根中间体,该中间体在高达500 K以上的温度下在催化剂表面都是稳定的。在用于CO加氢反应的高温(500 - 600 K)下,Zn与Cu(111)和Cu(100)的合金不稳定。与CO的反应会使锌氧化,增强其在铜基底上的稳定性。