Al-Sweel Najla, Raghavan Vandana, Dutta Abhishek, Ajith V P, Di Vietro Luigi, Khondakar Nabila, Manhart Carol M, Surtees Jennifer A, Nishant K T, Alani Eric
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India.
PLoS Genet. 2017 Aug 21;13(8):e1006974. doi: 10.1371/journal.pgen.1006974. eCollection 2017 Aug.
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3's enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.
Mlh1-Mlh3是一种核酸内切酶,据推测在减数分裂中发挥作用,将双Holliday连接体转化为交叉互换。它在真核生物DNA错配修复(MMR)中也起次要作用。为了了解Mlh1-Mlh3在减数分裂和MMR中的功能,我们在酿酒酵母中分析了60个新的mlh3等位基因。五个等位基因特异性破坏了MMR,而一个(mlh3-32)特异性破坏了减数分裂交叉互换。对每个类别的Mlh1-mlh3代表进行了纯化和表征。Mlh1-mlh3-32(MMR阳性,交叉互换阴性)和Mlh1-mlh3-45(MMR阴性,交叉互换阳性)在体外均表现出野生型核酸内切酶活性。Msh2-Msh3是一种在MMR中与Mlh1-Mlh3共同作用的MSH复合物,它刺激了Mlh1-mlh3-32的核酸内切酶活性,但没有刺激Mlh1-mlh3-45的活性,这表明Mlh1-mlh3-45在与MSH的相互作用中存在缺陷。在S288c/YJM789杂交背景下,构建了野生型、MMR阳性交叉互换阴性、MMR阴性交叉互换阳性、核酸内切酶缺陷型和mlh3缺失型突变体的全基因组重组图谱。与野生型相比,所有mlh3突变体的非交叉互换事件数量均增加,这与重组中间体通过替代重组途径得到解决一致。我们的观察结果提供了一个Mlh3的结构-功能图谱,揭示了蛋白质-蛋白质相互作用在调节Mlh1-Mlh3酶活性中的重要性。它们还说明了减数分裂成分缺陷如何改变减数分裂重组中间体的命运,为减数分裂重组途径的调控提供了新的见解。