Suppr超能文献

PRiMeUM:一种预测葡萄膜黑色素瘤转移风险的模型。

PRiMeUM: A Model for Predicting Risk of Metastasis in Uveal Melanoma.

作者信息

Vaquero-Garcia Jorge, Lalonde Emilie, Ewens Kathryn G, Ebrahimzadeh Jessica, Richard-Yutz Jennifer, Shields Carol L, Barrera Alejandro, Green Christopher J, Barash Yoseph, Ganguly Arupa

机构信息

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.

Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, United States.

出版信息

Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):4096-4105. doi: 10.1167/iovs.17-22255.

Abstract

PURPOSE

To create an interactive web-based tool for the Prediction of Risk of Metastasis in Uveal Melanoma (PRiMeUM) that can provide a personalized risk estimate of developing metastases within 48 months of primary uveal melanoma (UM) treatment. The model utilizes routinely collected clinical and tumor characteristics on 1227 UM, with the option of including chromosome information when available.

METHODS

Using a cohort of 1227 UM cases, Cox proportional hazard modeling was used to assess significant predictors of metastasis including clinical and chromosomal characteristics. A multivariate model to predict risk of metastasis was evaluated using machine learning methods including logistic regression, decision trees, survival random forest, and survival-based regression models. Based on cross-validation results, a logistic regression classifier was developed to compute an individualized risk of metastasis based on clinical and chromosomal information.

RESULTS

The PRiMeUM model provides prognostic information for personalized risk of metastasis in UM. The accuracy of the risk prediction ranged between 80% (using chromosomal features only), 83% using clinical features only (age, sex, tumor location, and size), and 85% (clinical and chromosomal information). Kaplan-Meier analysis showed these risk scores to be highly predictive of metastasis (P < 0.0001).

CONCLUSIONS

PRiMeUM provides a tool for predicting an individual's personal risk of metastasis based on their individual and tumor characteristics. It will aid physicians with decisions concerning frequency of systemic surveillance and can be used as a criterion for entering clinical trials for adjuvant therapies.

摘要

目的

创建一个基于网络的葡萄膜黑色素瘤转移风险预测交互式工具(PRiMeUM),该工具能够提供原发性葡萄膜黑色素瘤(UM)治疗后48个月内发生转移的个性化风险估计。该模型利用1227例UM患者常规收集的临床和肿瘤特征,如有可用的染色体信息也可纳入。

方法

使用1227例UM病例队列,采用Cox比例风险模型评估转移的显著预测因素,包括临床和染色体特征。使用机器学习方法(包括逻辑回归、决策树、生存随机森林和基于生存的回归模型)评估预测转移风险的多变量模型。基于交叉验证结果,开发了一个逻辑回归分类器,以根据临床和染色体信息计算个体转移风险。

结果

PRiMeUM模型为UM转移的个性化风险提供了预后信息。风险预测的准确率在80%(仅使用染色体特征)、83%(仅使用临床特征,年龄、性别、肿瘤位置和大小)和85%(临床和染色体信息)之间。Kaplan-Meier分析表明,这些风险评分对转移具有高度预测性(P < 0.0001)。

结论

PRiMeUM提供了一种基于个体和肿瘤特征预测个体转移风险的工具。它将有助于医生做出关于全身监测频率的决策,并可作为进入辅助治疗临床试验的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14c3/6108308/e805ec3b750f/i1552-5783-58-10-4096-f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验