Eskandari Sepehr, Willford Samantha L, Anderson Cynthia M
Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA.
Adv Neurobiol. 2017;16:85-116. doi: 10.1007/978-3-319-55769-4_5.
The purpose of this review is to highlight recent evidence in support of a 3 Na: 1 Cl: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na, Cl, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na, Cl, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na, Cl, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na, 2.0 ± 0.2 charges/Cl, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na, 0-5 Cl, and 1-5 GABA per transport cycle. Only the 3 Na: 1 Cl: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na: 1 Cl: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.
本综述的目的是强调最近的证据,以支持质膜γ-氨基丁酸(GABA)转运体(SLC6A1、SLC6A11、SLC6A12、SLC6A13)的3个Na:1个Cl:1个GABA偶联化学计量关系,以及修正后的化学计量关系如何影响我们对生理和病理生理状态下GABA转运体对大脑突触和突触外区域GABA稳态贡献的理解。最近,我们实验室通过分析六项独立测量的结果来探究GABA转运体的化学计量关系,这些测量包括细胞外Na、Cl和GABA浓度变化引起的热力学转运体反转电位的变化,以及电压钳条件下Na、Cl和GABA的电荷通量与底物通量之比。外部Na、Cl和GABA浓度变化十倍时,转运体反转电位的变化分别为84±4、30±1和29±1 mV。电荷通量与底物通量之比分别为0.7±0.1电荷/Na、2.0±0.2电荷/Cl和2.1±0.1电荷/GABA。然后,我们将这些实验结果与150种不同转运体化学计量模型的预测结果进行了比较,这些模型包括每个转运周期1 - 5个Na、0 - 5个Cl和1 - 5个GABA。只有3个Na:1个Cl:1个GABA化学计量模型正确预测了所有六项实验测量的结果。使用修正后的3个Na:1个Cl:1个GABA化学计量关系,我们提出GABA转运体在大多数生理条件下介导GABA摄取。转运体介导的GABA释放可能发生在病理生理或极端生理条件下。