Suppr超能文献

为什么甘氨酸转运体具有不同的化学计量比。

Why glycine transporters have different stoichiometries.

作者信息

Supplisson Stéphane, Roux Michel J

机构信息

Laboratoire de Neurobiologie Moléculaire et Cellulaire, UMR8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.

出版信息

FEBS Lett. 2002 Oct 2;529(1):93-101. doi: 10.1016/s0014-5793(02)03251-9.

Abstract

In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.

摘要

在大脑中,神经元和神经胶质细胞通过特定转运体竞争摄取快速神经递质谷氨酸、γ-氨基丁酸(GABA)和甘氨酸。神经胶质细胞和神经元对神经递质摄取的相对贡献取决于转运体的动力学特性、热力学偶联和密度,也取决于神经递质的细胞内代谢或隔离。甘氨酸既是一种抑制性递质,又是作为N-甲基-D-天冬氨酸受体的共激动剂对兴奋性谷氨酸能传递起神经调节作用,神经胶质细胞(GlyT1b)和神经元(GlyT2a)转运体至少在三个方面存在差异:(i)化学计量比,(ii)反向摄取能力,以及(iii)稳态前动力学。基于2个电荷/甘氨酸通量比以及转运体电流反转电位随细胞外甘氨酸、钠离子和氯离子浓度的变化,确定了GlyT2a的化学计量比为3个钠离子/1个氯离子/1个甘氨酸。因此,神经元中甘氨酸向上运输的驱动力比神经胶质细胞大两个数量级左右。此外,GlyT2a在反向摄取方面表现出严重限制,这表明GlyT2a在维持高细胞内甘氨酸池方面具有重要作用,从而有助于通过低亲和力、低特异性的囊泡转运体VGAT/VIAAT重新填充突触小泡。相比之下,GlyT1b的2个钠离子/1个氯离子/1个甘氨酸化学计量比和双向运输特性适合于将细胞外甘氨酸浓度控制在亚微摩尔范围内,从而有效调节N-甲基-D-天冬氨酸受体。最后,对GlyT1b和GlyT2a的稳态前动力学分析表明,在静息电位下,神经元转运体优先向外定向,准备结合甘氨酸,这表明在摄取竞争中具有动力学优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验