Martinez-Lopez Yoan, Caballero Yaile, Barigye Stephen J, Marrero-Ponce Yovani, Millan-Cabrera Reisel, Madera Julio, Torrens Francisco, Castillo-Garit Juan A
Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatics Research (CAMD-BIR Unit), Faculty of Chemistry-Pharmacy. Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Villa Clara. Cuba.
Department of Computer Sciences, Faculty of Computer Sciences, Camaguey University, Camaguey city, 74650, Camaguey. Cuba.
Curr Top Med Chem. 2017;17(26):2957-2976. doi: 10.2174/1568026617666170821123856.
There are a great number of tools that can be used in QSAR/QSPR studies; they are implemented in several programs that are reviewed in this report. The usefulness of new tools can be proved through comparison, with previously published approaches. In order to perform the comparison, the most usual is the use of several benchmark datasets such as DRAGON and Sutherland's datasets.
Here, an exploratory study of Atomic Weighted Vectors (AWVs), a new tool useful for drug discovery using different datasets, is presented. In order to evaluate the performance of the new tool, several statistics and QSAR/QSPR experiments are performed. Variability analyses are used to quantify the information content of the AWVs obtained from the tool, by means of an information theory-based algorithm.
Principal components analysis is used to analyze the orthogonality of these descriptors, for which the new MDs from AWVs provide different information from those codified by DRAGON descriptors (0-2D). The QSAR models are obtained for every Sutherland's dataset, according to the original division into training/test sets, by means of the multiple linear regression with genetic algorithm (MLR-GA). These models have been validated and compared favorably to several previously published approaches, using the same benchmark datasets.
The obtained results show that this tool should be a useful strategy for the QSAR/QSPR studies, despite its simplicity.
有大量工具可用于定量构效关系/定量结构性质关系(QSAR/QSPR)研究;本报告对多个程序中实现的这些工具进行了综述。新工具的实用性可通过与先前发表的方法进行比较来证明。为了进行比较,最常用的是使用多个基准数据集,如DRAGON和萨瑟兰数据集。
本文介绍了对原子加权向量(AWV)的探索性研究,这是一种使用不同数据集进行药物发现的新工具。为了评估该新工具的性能,进行了多项统计和QSAR/QSPR实验。通过基于信息论的算法,使用变异性分析来量化从该工具获得的AWV的信息含量。
主成分分析用于分析这些描述符的正交性,为此,来自AWV的新分子描述符提供了与由DRAGON描述符(0-2D)编码的描述符不同的信息。根据最初划分为训练/测试集的情况,通过遗传算法多元线性回归(MLR-GA)为每个萨瑟兰数据集获得QSAR模型。使用相同的基准数据集,这些模型已经过验证,并与先前发表的几种方法进行了比较,结果良好。
所得结果表明,尽管该工具很简单,但对于QSAR/QSPR研究来说应该是一种有用的策略。