Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):31119-31128. doi: 10.1021/acsami.7b09019. Epub 2017 Aug 30.
We found that elemental Si-doped Cu(In,Ga)Se (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
我们发现,元素硅掺杂铜铟镓硒(CIGS)多晶薄膜由于形成几十纳米厚的晶界层而呈现出独特的形貌。使用硅掺杂 CIGS 薄膜作为简化结构无缓冲层太阳能电池器件中的光吸收层,被发现可以有效地提高能量转换效率。在硅掺杂 CIGS 薄膜中形成的晶界层有望在钝化 CIGS 晶粒界面和改善载流子输运方面发挥重要作用。名义上仅由 CIGS 光吸收层和前透明后金属电极层组成的简化结构太阳能电池,展示了超过 15%的实用级太阳能电池效率。迄今为止,这种类型的器件展示的电池效率仍然相对较低,约为 10%。此外,硅掺杂 CIGS 太阳能电池器件表现出与使用后沉积碱卤处理(如 KF 或 RbF)制造的 CIGS 器件类似的性能,这些技术已知可以提高 CIGS 器件的性能。所获得的结果提供了一种基于新概念的新方法,用于控制多晶 CIGS 和其他多晶硫属化物材料中的晶界,以获得更好的器件性能。