Bézie Séverine, Usal Claire, Guillonneau Carole
Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes.
Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes;
J Vis Exp. 2017 Aug 12(126):55510. doi: 10.3791/55510.
The main concern in transplantation is to achieve specific tolerance through induction of regulatory cells. The understanding of tolerance mechanisms requires reliable models. Here, we describe models of tolerance to cardiac allograft in rat, induced by blockade of costimulation signals or by upregulation of immunoregulatory molecules through gene transfer. Each of these models allowed in vivo generation of regulatory cells such as regulatory T cells (Tregs), regulatory B cells (Bregs) or regulatory myeloid cells (RegMCs). In this manuscript, we describe two complementary protocols that have been used to identify and define in vitro and in vivo regulatory cell activity to determine their responsibility in tolerance induction and maintenance. First, an in vitro suppressive assay allowed rapid identification of cells with suppressive capacity on effector immune responses in a dose dependent manner, and can be used for further analysis such as cytokine measurement or cytotoxicity. Second, the adoptive transfer of cells from a tolerant treated recipient to a newly irradiated grafted recipient, highlighted the tolerogenic properties of these cells in controlling graft directed immune responses and/or converting new regulatory cells (termed infectious tolerance). These methods are not restricted to cells with known phenotypic markers and can be extended to any cell population. Furthermore, donor directed allospecificity of regulatory cells (an important goal in the field) can be assessed by using third party donor cells or graft either in vitro or in vivo. Finally, to determine the specific tolerogenic capacity of these regulatory cells, we provide protocols to assess the humoral anti-donor antibody responses and the capacity of the recipient to develop humoral responses against new or former known antigens. The models of tolerance described can be used to further characterize regulatory cells, to identify new biomarkers, and immunoregulatory molecules, and are adaptable to other transplantation models or autoimmune diseases in rodent or human.
移植领域的主要关注点是通过诱导调节性细胞来实现特异性耐受。对耐受机制的理解需要可靠的模型。在此,我们描述了大鼠心脏同种异体移植耐受模型,这些模型是通过共刺激信号阻断或通过基因转移上调免疫调节分子诱导产生的。每种模型都能在体内产生调节性细胞,如调节性T细胞(Tregs)、调节性B细胞(Bregs)或调节性髓样细胞(RegMCs)。在本手稿中,我们描述了两种互补的方案,这些方案已被用于在体外和体内鉴定和定义调节性细胞活性,以确定它们在耐受诱导和维持中的作用。首先,体外抑制试验能够以剂量依赖的方式快速鉴定对效应性免疫反应具有抑制能力的细胞,并且可用于进一步分析,如细胞因子测量或细胞毒性检测。其次,将来自耐受处理受体的细胞过继转移到新接受照射的移植受体中,突出了这些细胞在控制针对移植物的免疫反应和/或转化新的调节性细胞(称为感染性耐受)方面的致耐受性特性。这些方法不限于具有已知表型标志物的细胞,可扩展到任何细胞群体。此外,调节性细胞的供体特异性同种异体反应性(该领域的一个重要目标)可通过在体外或体内使用第三方供体细胞或移植物来评估。最后,为了确定这些调节性细胞的特异性致耐受能力,我们提供了评估体液抗供体抗体反应以及受体针对新的或先前已知抗原产生体液反应能力的方案。所描述的耐受模型可用于进一步表征调节性细胞、鉴定新的生物标志物和免疫调节分子,并且适用于啮齿动物或人类的其他移植模型或自身免疫性疾病。