Sáez Patricia L, Bravo León A, Cavieres Lohengrin A, Vallejos Valentina, Sanhueza Carolina, Font-Carrascosa Marcel, Gil-Pelegrín Eustaquio, Javier Peguero-Pina José, Galmés Jeroni
Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.
Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
J Exp Bot. 2017 May 17;68(11):2871-2883. doi: 10.1093/jxb/erx148.
Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula.
特定的生理特性使南极发草(Deschampsia antarctica Desv.)和南极漆姑草(Colobanthus quitensis (Kunth) Bartl.)这两种维管植物能够在南极洲生存。对这些物种的光合性能进行了原位评估,重点关注二氧化碳同化的扩散和生化限制因素。在乔治王岛和拉戈泰勒里岛生长的植物中,检测了叶片气体交换、叶绿素a荧光、叶片超微结构和核酮糖-1,5-二磷酸羧化酶(Rubisco)的催化特性。尽管测量温度对主要光合参数有物种和种群特异性影响,但二氧化碳同化受到二氧化碳扩散的高度限制。特别是,通过气体交换和叶片叶绿素荧光估算并根据叶片解剖结构建模得出的叶肉导度(gm)非常低,限制了二氧化碳扩散,并对二氧化碳获取施加了最强的限制。如体外测定所示,Rubisco对二氧化碳具有高度特异性,这表明二氧化碳扩散与叶片生物化学之间存在紧密协调,这最终可能对优化这些物种的碳平衡至关重要。有趣的是,解剖学和生化特征都与干旱环境中植物的特征相似,这为植物对极端条件的功能适应提供了新的见解。了解这些物种中实际限制光合作用的因素对于预测它们对南极半岛持续和预计的快速变暖的反应非常重要。