Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de México 09340, Mexico.
Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
J Chem Phys. 2017 Aug 21;147(7):074113. doi: 10.1063/1.4998701.
An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T(I-A), where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.
在巨正则系综形式中,提出了一种硬度的替代定义(称为热力学硬度),它是根据电子化学势相对于储层热力学化学势的偏导数来定义的,同时保持温度和外电势恒定。这个依赖于温度的定义可以被解释为系统在与其他物质相互作用时发生电荷转移过程的倾向的度量,因此它保持了原始定义的哲学。当导数用三态系综模型表示时,在低温区并且温度达到化学兴趣的温度范围内,人们发现对于零分数电荷,热力学硬度与 T(I-A)成正比,其中 I 是第一电离能,A 是电子亲合能,T 是温度。然而,当分数电荷不为零时,热力学硬度几乎为零。因此,通过本定义,可以避免狄拉克 δ 函数的存在。我们表明,以这种方式定义的化学硬度为具有整数或分数平均电子数的化学物质的硬度特性提供了有意义和可区分的信息,这种分析使我们能够在本定义的硬度最大值和最小软度原理之间建立联系,表明这两个原理都与最小分数电荷和最大稳定性条件有关。