Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Ciudad de México 09340, Mexico.
J Chem Phys. 2018 Sep 28;149(12):124110. doi: 10.1063/1.5040889.
In this brief report, we show that the three different chemical hardness definitions developed in the framework of the temperature-dependent density functional theory-namely, the electronic, the thermodynamic, and the Helmholtz hardnesses-imply both the hard and soft acids and bases (HSAB) principle and the maximum hardness (MH) principle. These hardnesses are identified as the second derivative of a thermodynamic state function and avoid the somewhat arbitrary approach, based on the parabolic interpolation of the energy versus electron number, that is normally used to justify these principles. This not only leads to a more mathematically sound justification of the HSAB and MH principles in the low-temperature limit but also establishes that the HSAB and the MH principles hold at any temperature of chemical relevance.
在这份简短的报告中,我们表明在依赖温度的密度泛函理论框架下发展的三种不同的化学硬度定义——电子硬度、热力学硬度和亥姆霍兹硬度——既蕴含了硬酸和软酸(HSAB)原理,也蕴含了最大硬度(MH)原理。这些硬度被确定为热力学状态函数的二阶导数,避免了通常用于证明这些原理的基于能量对电子数的抛物线插值的有些任意的方法。这不仅导致在低温极限下对 HSAB 和 MH 原理的更数学上合理的证明,而且还确立了 HSAB 和 MH 原理在任何有化学相关性的温度下都成立。