Department of Biotechnology, Delhi Technological University, Delhi 110042, India; Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
Biotechnol Adv. 2017 Nov 15;35(7):867-888. doi: 10.1016/j.biotechadv.2017.08.002. Epub 2017 Aug 19.
The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.
细胞骨架丝是由直径为 8-25nm 且长达数十微米的蛋白质聚合物自组装而成。它们在真核细胞中具有一系列关键作用,包括细胞内货物的运输(主要是带有动力蛋白和驱动蛋白的微管)和细胞运动(主要是肌动蛋白和肌球蛋白),其中肌肉收缩就是一个例子。二十年来,细胞骨架丝及其相关的运动系统一直被探索用于纳米技术应用,包括微型传感器系统和芯片上实验室设备。一些发展也围绕着单独利用这些纤维而不利用它们的运动伙伴进行。为了将细胞骨架丝应用于各种领域,通常需要对这些纤维进行化学或基因工程改造,例如与荧光染料、抗体、寡核苷酸或各种大分子复合物(如纳米颗粒)进行特异性偶联。类似的偶联方法对于一系列基础生物物理研究也很重要。在这里,我们综述了肌动蛋白丝的非共价和共价化学修饰方法,重点介绍了不同方法的关键优势和挑战,以及偶联步骤中的关键步骤。我们还综述了工程化肌动蛋白丝在纳米技术应用和肌动蛋白和肌球蛋白功能的一些关键基础研究中的潜在用途。最后,我们考虑了通过以新的方式应用肌动蛋白的化学偶联可能解决的未来研究方向。