Department of Biology, Texas A&M University, College Station, TX 77843.
Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7516-E7525. doi: 10.1073/pnas.1702014114. Epub 2017 Aug 22.
Circadian repression of CLOCK-BMAL1 by PERIOD and CRYPTOCHROME (CRY) in mammals lies at the core of the circadian timekeeping mechanism. CRY repression of CLOCK-BMAL1 and regulation of circadian period are proposed to rely primarily on competition for binding with coactivators on an α-helix located within the transactivation domain (TAD) of the BMAL1 C terminus. This model has, however, not been tested in vivo. Here, we applied CRISPR/Cas9-mediated mutagenesis in the monarch butterfly (), which possesses a vertebrate-like CRY (dpCRY2) and an ortholog of BMAL1, to show that insect CRY2 regulates circadian repression through TAD α-helix-dependent and -independent mechanisms. Monarch mutants lacking the BMAL1 C terminus including the TAD exhibited arrhythmic eclosion behavior. In contrast, mutants lacking the TAD α-helix but retaining the most distal C-terminal residues exhibited robust rhythms during the first day of constant darkness (DD1), albeit with a delayed peak of eclosion. Phase delay in this mutant on DD1 was exacerbated in the presence of a single functional allele of , and rhythmicity was abolished in the absence of dpCRY2. Reporter assays in S2 cells further revealed that dpCRY2 represses through two distinct mechanisms: a TAD-dependent mechanism that involves the dpBMAL1 TAD α-helix and dpCLK W328 and a TAD-independent mechanism involving dpCLK E333. Together, our results provide evidence for independent mechanisms of vertebrate-like CRY circadian regulation on the BMAL1 C terminus and the CLK PAS-B domain and demonstrate the importance of a BMAL1 TAD-independent mechanism for generating circadian rhythms in vivo.
在哺乳动物中,生物钟蛋白 CLOCK-BMAL1 被 PERIOD 和 CRYPTOCHROME(CRY)的昼夜节律抑制,位于生物钟计时机制的核心。CRY 对 CLOCK-BMAL1 的抑制和生物钟周期的调节被认为主要依赖于在 BMAL1 C 端的转录激活域(TAD)内的一个α螺旋上与共激活因子竞争结合。然而,这种模型尚未在体内进行测试。在这里,我们应用 CRISPR/Cas9 介导的突变在帝王蝶()中,它具有类似于脊椎动物的 CRY(dpCRY2)和 BMAL1 的同源物,表明昆虫 CRY2 通过 TAD α-螺旋依赖性和非依赖性机制调节生物钟抑制。缺乏包括 TAD 的 BMAL1 C 端的帝王蝶突变体表现出无节奏的出蛰行为。相比之下,缺乏 TAD α-螺旋但保留最远端 C 末端残基的突变体在第一天的恒定黑暗(DD1)中表现出强烈的节律,尽管出蛰的峰值延迟。在存在一个功能性等位基因的情况下,该突变体在 DD1 上的相位延迟加剧,并且在没有 dpCRY2 的情况下节律性被消除。在 S2 细胞中的报告基因实验进一步表明,dpCRY2 通过两种不同的机制进行抑制:一种是依赖 TAD 的机制,涉及 dpBMAL1 TAD α-螺旋和 dpCLK W328,另一种是独立于 TAD 的机制,涉及 dpCLK E333。总之,我们的结果为脊椎动物样 CRY 对 BMAL1 C 端和 CLK PAS-B 结构域的生物钟调节提供了独立机制的证据,并证明了 BMAL1 TAD 非依赖性机制在体内产生生物钟节律的重要性。