Suppr超能文献

来自帝王蝶的脊椎动物样隐花色素 2 通过独立抑制 CLOCK 和 BMAL1 活性来调节生物钟转录。

Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.

机构信息

Department of Biology, Texas A&M University, College Station, TX 77843.

Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7516-E7525. doi: 10.1073/pnas.1702014114. Epub 2017 Aug 22.

Abstract

Circadian repression of CLOCK-BMAL1 by PERIOD and CRYPTOCHROME (CRY) in mammals lies at the core of the circadian timekeeping mechanism. CRY repression of CLOCK-BMAL1 and regulation of circadian period are proposed to rely primarily on competition for binding with coactivators on an α-helix located within the transactivation domain (TAD) of the BMAL1 C terminus. This model has, however, not been tested in vivo. Here, we applied CRISPR/Cas9-mediated mutagenesis in the monarch butterfly (), which possesses a vertebrate-like CRY (dpCRY2) and an ortholog of BMAL1, to show that insect CRY2 regulates circadian repression through TAD α-helix-dependent and -independent mechanisms. Monarch mutants lacking the BMAL1 C terminus including the TAD exhibited arrhythmic eclosion behavior. In contrast, mutants lacking the TAD α-helix but retaining the most distal C-terminal residues exhibited robust rhythms during the first day of constant darkness (DD1), albeit with a delayed peak of eclosion. Phase delay in this mutant on DD1 was exacerbated in the presence of a single functional allele of , and rhythmicity was abolished in the absence of dpCRY2. Reporter assays in S2 cells further revealed that dpCRY2 represses through two distinct mechanisms: a TAD-dependent mechanism that involves the dpBMAL1 TAD α-helix and dpCLK W328 and a TAD-independent mechanism involving dpCLK E333. Together, our results provide evidence for independent mechanisms of vertebrate-like CRY circadian regulation on the BMAL1 C terminus and the CLK PAS-B domain and demonstrate the importance of a BMAL1 TAD-independent mechanism for generating circadian rhythms in vivo.

摘要

在哺乳动物中,生物钟蛋白 CLOCK-BMAL1 被 PERIOD 和 CRYPTOCHROME(CRY)的昼夜节律抑制,位于生物钟计时机制的核心。CRY 对 CLOCK-BMAL1 的抑制和生物钟周期的调节被认为主要依赖于在 BMAL1 C 端的转录激活域(TAD)内的一个α螺旋上与共激活因子竞争结合。然而,这种模型尚未在体内进行测试。在这里,我们应用 CRISPR/Cas9 介导的突变在帝王蝶()中,它具有类似于脊椎动物的 CRY(dpCRY2)和 BMAL1 的同源物,表明昆虫 CRY2 通过 TAD α-螺旋依赖性和非依赖性机制调节生物钟抑制。缺乏包括 TAD 的 BMAL1 C 端的帝王蝶突变体表现出无节奏的出蛰行为。相比之下,缺乏 TAD α-螺旋但保留最远端 C 末端残基的突变体在第一天的恒定黑暗(DD1)中表现出强烈的节律,尽管出蛰的峰值延迟。在存在一个功能性等位基因的情况下,该突变体在 DD1 上的相位延迟加剧,并且在没有 dpCRY2 的情况下节律性被消除。在 S2 细胞中的报告基因实验进一步表明,dpCRY2 通过两种不同的机制进行抑制:一种是依赖 TAD 的机制,涉及 dpBMAL1 TAD α-螺旋和 dpCLK W328,另一种是独立于 TAD 的机制,涉及 dpCLK E333。总之,我们的结果为脊椎动物样 CRY 对 BMAL1 C 端和 CLK PAS-B 结构域的生物钟调节提供了独立机制的证据,并证明了 BMAL1 TAD 非依赖性机制在体内产生生物钟节律的重要性。

相似文献

1
Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7516-E7525. doi: 10.1073/pnas.1702014114. Epub 2017 Aug 22.
2
Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.
Nat Struct Mol Biol. 2015 Jun;22(6):476-484. doi: 10.1038/nsmb.3018. Epub 2015 May 11.
3
Molecular mechanism of the repressive phase of the mammalian circadian clock.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2021174118. Epub 2020 Dec 21.
5
A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.
PLoS One. 2015 Sep 22;10(9):e0138661. doi: 10.1371/journal.pone.0138661. eCollection 2015.
7
CLOCKWORK ORANGE promotes CLOCK-CYCLE activation via the putative Drosophila ortholog of CLOCK INTERACTING PROTEIN CIRCADIAN.
Curr Biol. 2021 Oct 11;31(19):4207-4218.e4. doi: 10.1016/j.cub.2021.07.017. Epub 2021 Jul 30.
8
Drosophila CRYPTOCHROME is a circadian transcriptional repressor.
Curr Biol. 2006 Mar 7;16(5):441-9. doi: 10.1016/j.cub.2006.01.034.
9
A positive role for PERIOD in mammalian circadian gene expression.
Cell Rep. 2014 May 22;7(4):1056-64. doi: 10.1016/j.celrep.2014.03.072. Epub 2014 May 1.
10
The circadian clock regulates rhythmic erythropoietin expression in the murine kidney.
Kidney Int. 2021 Nov;100(5):1071-1080. doi: 10.1016/j.kint.2021.07.012. Epub 2021 Jul 30.

引用本文的文献

2
Molecular basis of circadian rhythm divergence between diurnal and nocturnal lepidoperans.
iScience. 2025 Mar 12;28(4):112206. doi: 10.1016/j.isci.2025.112206. eCollection 2025 Apr 18.
3
A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers.
Trends Biochem Sci. 2025 Apr;50(4):344-355. doi: 10.1016/j.tibs.2025.01.006. Epub 2025 Feb 13.
4
Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight.
J Exp Zool A Ecol Integr Physiol. 2025 Jan;343(1):81-94. doi: 10.1002/jez.2870. Epub 2024 Oct 7.
5
Loss of functional reduces robustness of 24-hour behavioral rhythms in monarch butterflies.
iScience. 2024 Jan 20;27(2):108980. doi: 10.1016/j.isci.2024.108980. eCollection 2024 Feb 16.
7
Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock.
PLoS Genet. 2023 Sep 8;19(9):e1010924. doi: 10.1371/journal.pgen.1010924. eCollection 2023 Sep.
8
Cryptochromes in mammals: a magnetoreception misconception?
Front Physiol. 2023 Aug 21;14:1250798. doi: 10.3389/fphys.2023.1250798. eCollection 2023.
9
Probing Transcriptional Crosstalk between and () in the Magnetoresponse of a Migratory Insect.
Int J Mol Sci. 2023 Jul 5;24(13):11101. doi: 10.3390/ijms241311101.
10
Migration genetics take flight: genetic and genomic insights into monarch butterfly migration.
Curr Opin Insect Sci. 2023 Oct;59:101079. doi: 10.1016/j.cois.2023.101079. Epub 2023 Jun 28.

本文引用的文献

1
A Slow Conformational Switch in the BMAL1 Transactivation Domain Modulates Circadian Rhythms.
Mol Cell. 2017 May 18;66(4):447-457.e7. doi: 10.1016/j.molcel.2017.04.011. Epub 2017 May 11.
2
Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1560-1565. doi: 10.1073/pnas.1615310114. Epub 2017 Jan 31.
3
Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis.
G3 (Bethesda). 2016 Apr 7;6(4):905-15. doi: 10.1534/g3.116.027029.
4
Neurobiology of Monarch Butterfly Migration.
Annu Rev Entomol. 2016;61:25-42. doi: 10.1146/annurev-ento-010814-020855. Epub 2015 Oct 16.
5
A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms.
PLoS One. 2015 Sep 22;10(9):e0138661. doi: 10.1371/journal.pone.0138661. eCollection 2015.
6
Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.
Nat Struct Mol Biol. 2015 Jun;22(6):476-484. doi: 10.1038/nsmb.3018. Epub 2015 May 11.
9
A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16021-6. doi: 10.1073/pnas.1305980110. Epub 2013 Sep 16.
10
Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13904-9. doi: 10.1073/pnas.1308335110. Epub 2013 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验