Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
Sci Rep. 2017 Aug 22;7(1):9085. doi: 10.1038/s41598-017-08913-y.
There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of 40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (20 μm) microchannels, with aspect-ratios up to 8, on the surface of solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.
人们对于降低硅光伏金属接触损耗,尤其是前金属栅极的光学和电阻损耗,有着浓厚的兴趣。人们普遍追求的一个目标是制造高纵横比的金属指状结构,为外部电路提供光学上窄且电阻低的通路。目前,应用最广泛的金属接触沉积技术仅限于约 40μm 的宽度和 0.5 的纵横比。在这项研究中,我们引入了使用微图案化的聚二甲基硅氧烷封装层在太阳能电池表面形成狭窄(~20μm)的微通道,纵横比高达 8。我们证明低温金属膏、化学镀和原子层沉积都可以在微通道内使用。此外,我们还制造了概念验证结构,包括简单的平面硅异质结和同质结太阳能电池。虽然在设计和效率方面还处于初步阶段,但这些结果证明了这种方法的潜力及其与当前太阳能电池结构的兼容性。