Suppr超能文献

受限微通道中复合胶囊的数值模拟

Numerical simulation of a compound capsule in a constricted microchannel.

作者信息

Gounley John, Draeger Erik W, Randles Amanda

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA.

出版信息

Procedia Comput Sci. 2017;108:175-184. doi: 10.1016/j.procs.2017.05.209.

Abstract

Simulations of the passage of eukaryotic cells through a constricted channel aid in studying the properties of cancer cells and their transport in the bloodstream. Compound capsules, which explicitly model the outer cell membrane and nuclear lamina, have the potential to improve computational model fidelity. However, general simulations of compound capsules transiting a constricted microchannel have not been conducted and the influence of the compound capsule model on computational performance is not well known. In this study, we extend a parallel hemodynamics application to simulate the fluid-structure interaction between compound capsules and fluid. With this framework, we compare the deformation of simple and compound capsules in constricted microchannels, and explore how deformation depends on the capillary number and on the volume fraction of the inner membrane. The computational framework's parallel performance in this setting is evaluated and future development lessons are discussed.

摘要

对真核细胞通过狭窄通道的过程进行模拟,有助于研究癌细胞的特性及其在血液中的运输。复合胶囊明确模拟了细胞外膜和核纤层,有潜力提高计算模型的保真度。然而,尚未对复合胶囊通过狭窄微通道进行全面模拟,且复合胶囊模型对计算性能的影响也尚不明确。在本研究中,我们扩展了一个并行血液动力学应用程序,以模拟复合胶囊与流体之间的流固相互作用。利用这个框架,我们比较了简单胶囊和复合胶囊在狭窄微通道中的变形情况,并探讨了变形如何依赖于毛细管数和内膜的体积分数。评估了该计算框架在这种情况下的并行性能,并讨论了未来的发展方向。

相似文献

1
Numerical simulation of a compound capsule in a constricted microchannel.
Procedia Comput Sci. 2017;108:175-184. doi: 10.1016/j.procs.2017.05.209.
2
A computational model for the transit of a cancer cell through a constricted microchannel.
Biomech Model Mechanobiol. 2023 Aug;22(4):1129-1143. doi: 10.1007/s10237-023-01705-6. Epub 2023 Feb 28.
3
Modeling the interactions between compliant microcapsules and pillars in microchannels.
J Chem Phys. 2007 Jul 21;127(3):034703. doi: 10.1063/1.2753150.
4
The dynamics of a healthy and infected red blood cell in flow through constricted channels: A DPD simulation.
Int J Numer Method Biomed Eng. 2018 Sep;34(9):e3105. doi: 10.1002/cnm.3105. Epub 2018 Jun 25.
6
Numerical simulation of motion and deformation of healthy and sick red blood cell through a constricted vessel using hybrid lattice Boltzmann-immersed boundary method.
Comput Methods Biomech Biomed Engin. 2017 May;20(7):737-749. doi: 10.1080/10255842.2017.1298746. Epub 2017 Mar 3.
7
Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 2):046710. doi: 10.1103/PhysRevE.79.046710. Epub 2009 Apr 21.
8
Numerical simulation of intracellular drug delivery via rapid squeezing.
Biomicrofluidics. 2021 Aug 2;15(4):044102. doi: 10.1063/5.0059165. eCollection 2021 Jul.
9
Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
Comput Math Methods Med. 2018 Feb 21;2018:9425375. doi: 10.1155/2018/9425375. eCollection 2018.
10
Numerical simulations of capsule deformation using a dual time-stepping lattice Boltzmann method.
Phys Rev E. 2021 Feb;103(2-1):023309. doi: 10.1103/PhysRevE.103.023309.

引用本文的文献

1
Distributed Acceleration of Adhesive Dynamics Simulations.
Proc 2022 29th Eur MPI Users Group Meet EuroMPIUSA 2022 (2022). 2022 Sep;2022:37-45. doi: 10.1145/3555819.3555832. Epub 2022 Sep 14.
2
Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts.
Int Conf High Perform Comput Netw Storage Anal. 2023 Nov;2023. doi: 10.1145/3581784.3607105. Epub 2023 Nov 11.
3
High Performance Adaptive Physics Refinement to Enable Large-Scale Tracking of Cancer Cell Trajectory.
Proc IEEE Int Conf Clust Comput. 2022 Sep;2022:230-242. doi: 10.1109/cluster51413.2022.00036. Epub 2022 Oct 18.
4
Investigating the Influence of Heterogeneity Within Cell Types on Microvessel Network Transport.
Cell Mol Bioeng. 2023 Nov 29;16(5-6):497-507. doi: 10.1007/s12195-023-00790-y. eCollection 2023 Dec.
5
The role of adhesive receptor patterns on cell transport in complex microvessels.
Biomech Model Mechanobiol. 2022 Aug;21(4):1079-1098. doi: 10.1007/s10237-022-01575-4. Epub 2022 May 4.
6
Numerical simulation of intracellular drug delivery via rapid squeezing.
Biomicrofluidics. 2021 Aug 2;15(4):044102. doi: 10.1063/5.0059165. eCollection 2021 Jul.
7
Investigating the Interaction Between Circulating Tumor Cells and Local Hydrodynamics Experiment and Simulations.
Cell Mol Bioeng. 2020 Oct 21;13(5):527-540. doi: 10.1007/s12195-020-00656-7. eCollection 2020 Oct.
8
Multi-GPU Immersed Boundary Method Hemodynamics Simulations.
J Comput Sci. 2020 Jul;44. doi: 10.1016/j.jocs.2020.101153. Epub 2020 Jun 14.
9
Localization of Rolling and Firm-Adhesive Interactions Between Circulating Tumor Cells and the Microvasculature Wall.
Cell Mol Bioeng. 2020 Jan 24;13(2):141-154. doi: 10.1007/s12195-020-00610-7. eCollection 2020 Apr.
10
Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature.
Int J Numer Method Biomed Eng. 2019 Jun;35(6):e3198. doi: 10.1002/cnm.3198. Epub 2019 Apr 1.

本文引用的文献

1
Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature.
J Comput Sci. 2015 Jul;9:70-75. doi: 10.1016/j.jocs.2015.04.003. Epub 2015 Apr 17.
2
Clusters of circulating tumor cells traverse capillary-sized vessels.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):4947-52. doi: 10.1073/pnas.1524448113. Epub 2016 Apr 18.
3
Numerical simulation of a single cell passing through a narrow slit.
Biomech Model Mechanobiol. 2016 Dec;15(6):1655-1667. doi: 10.1007/s10237-016-0789-y. Epub 2016 Apr 15.
4
A computational study of circulating large tumor cells traversing microvessels.
Comput Biol Med. 2015 Aug;63:187-95. doi: 10.1016/j.compbiomed.2015.05.024. Epub 2015 Jun 10.
5
Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model.
Philos Trans A Math Phys Eng Sci. 2014 Aug 6;372(2021). doi: 10.1098/rsta.2013.0389.
7
Characterizing deformability and surface friction of cancer cells.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7580-5. doi: 10.1073/pnas.1218806110. Epub 2013 Apr 22.
8
How malaria parasites reduce the deformability of infected red blood cells.
Biophys J. 2012 Jul 3;103(1):1-10. doi: 10.1016/j.bpj.2012.05.026.
9
Dynamics of a compound vesicle in shear flow.
Phys Rev Lett. 2011 Apr 15;106(15):158103. doi: 10.1103/PhysRevLett.106.158103. Epub 2011 Apr 14.
10
Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems.
Ann Biomed Eng. 2011 Mar;39(3):1041-50. doi: 10.1007/s10439-010-0232-y. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验