Zheng Ding, Zhao Lili, Fan Pu, Ji Ran, Yu Junsheng
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
Nanomaterials (Basel). 2017 Aug 23;7(9):233. doi: 10.3390/nano7090233.
An innovative bilayer cathode interlayer (CIL) with a nanostructure consisting of in situ thermal reduced graphene oxide (ITR-GO) and poly[(9,9-bis(3'-(,-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl) fluorene] (PFN) has been fabricated for inverted organic solar cells (OSCs). An approach to prepare a CIL of high electronic quality by using ITR-GO as a template to modulate the morphology of the interface between the active layer and electrode and to further reduce the work function of the electrode has also been realized. This bilayer ITR-GO/PFN CIL is processed by a spray-coating method with facile in situ thermal reduction. Meanwhile, the CIL shows a good charge transport efficiency and less charge recombination, which leads to a significant enhancement of the power conversion efficiency from 6.47% to 8.34% for Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl} (PTB7):[6,6]-phenyl-C-butyric acid methyl ester (PCBM)-based OSCs. In addition, the long-term stability of the OSC is improved by using the ITR-GO/PFN CIL when compared with the pristine device. These results indicate that the bilayer ITR-GO/PFN CIL is a promising way to realize high-efficiency and stable OSCs by using water-soluble conjugated polymer electrolytes such as PFN.
一种具有由原位热还原氧化石墨烯(ITR-GO)和聚[(9,9-双(3'-(N,N-二甲基氨基)丙基)-2,7-芴)-alt-2,7-(9,9-二辛基)芴](PFN)组成的纳米结构的创新型双层阴极中间层(CIL)已被制备用于倒置有机太阳能电池(OSC)。还实现了一种通过使用ITR-GO作为模板来调制活性层与电极之间界面的形态并进一步降低电极功函数来制备具有高电子质量的CIL的方法。这种双层ITR-GO/PFN CIL通过具有简便原位热还原的喷涂方法进行处理。同时,该CIL显示出良好的电荷传输效率和较少的电荷复合,这导致基于聚({4,8-双[(2-乙基己基)氧基]苯并[1,2-b:4,5-b']二噻吩-2,6-二基}{3-氟-2-[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基}(PTB7):[6,6]-苯基-C-丁酸甲酯(PCBM)的OSC的功率转换效率从6.47%显著提高到8.34%。此外,与原始器件相比,使用ITR-GO/PFN CIL可提高OSC的长期稳定性。这些结果表明,双层ITR-GO/PFN CIL是通过使用诸如PFN之类的水溶性共轭聚合物电解质来实现高效且稳定的OSC的一种有前途的方法。