Suppr超能文献

使用质谱法研究着丝粒和动粒

Use of Mass Spectrometry to Study the Centromere and Kinetochore.

作者信息

Samejima Itaru, Platani Melpomeni, Earnshaw William C

机构信息

Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.

出版信息

Prog Mol Subcell Biol. 2017;56:3-27. doi: 10.1007/978-3-319-58592-5_1.

Abstract

A number of paths have led to the present list of centromere proteins, which is essentially complete for constitutive structural proteins, but still may be only partial if we consider the many other proteins that briefly visit the centromere and kinetochore to fine-tune the chromatin and adjust other functions. Elegant genetics led to the description of the budding yeast point centromere in 1980. In the same year was published the serendipitous discovery of antibodies that stained centromeres of human mitotic chromosomes in antisera from CREST patients. Painstaking biochemical analyses led to the identification of the human centromere antigens several years later, with the first yeast proteins being described 6 years after that. Since those early days, the discovery and cloning of centromere and kinetochore proteins has largely been driven by improvements in technology. These began with expression cloning methods, which allowed antibodies to lead to cDNA clones. Next, functional screens for kinetochore proteins were made possible by the isolation of yeast centromeric DNAs. Ultimately, the completion of genome sequences for humans and model organisms permitted the coupling of biochemical fractionation with protein identification by mass spectrometry. Subsequent improvements in mass spectrometry have led to the current state where virtually all structural components of the kinetochore are known and where a high-resolution map of the entire structure will likely emerge within the next several years.

摘要

通往目前着丝粒蛋白列表的途径有很多,就组成型结构蛋白而言,该列表基本完整,但如果我们考虑到许多其他短暂访问着丝粒和动粒以微调染色质并调节其他功能的蛋白质,那么它可能仍然只是部分完整的。1980年,巧妙的遗传学研究促成了对芽殖酵母点着丝粒的描述。同年,意外发现了能在CREST患者抗血清中染色人类有丝分裂染色体着丝粒的抗体。几年后,经过艰苦的生化分析确定了人类着丝粒抗原,此后6年首次描述了酵母蛋白。从早期开始,着丝粒和动粒蛋白的发现与克隆在很大程度上得益于技术的进步。这些进步始于表达克隆方法,该方法使抗体能够导向cDNA克隆。接下来,酵母着丝粒DNA的分离使得对动粒蛋白进行功能筛选成为可能。最终,人类和模式生物基因组序列的完成使得生化分级分离与通过质谱鉴定蛋白质得以结合。随后质谱技术的改进导致了目前的状态,即动粒的几乎所有结构成分都已为人所知,并且在未来几年内可能会出现整个结构的高分辨率图谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验