Karst Daniel J, Steinhoff Robert F, Kopp Marie R G, Soos Miroslav, Zenobi Renato, Morbidelli Massimo
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
Biotechnol Prog. 2017 Nov;33(6):1630-1639. doi: 10.1002/btpr.2539. Epub 2017 Sep 7.
The steady-state operation of Chinese hamster ovary (CHO) cells in perfusion bioreactors requires the equilibration of reactor dynamics and cell metabolism. Accordingly, in this work we investigate the transient cellular response to changes in its environment and their interactions with the bioreactor hydrodynamics. This is done in a benchtop perfusion bioreactor using MALDI-TOF MS through isotope labeling of complex intracellular nucleotides (ATP, UTP) and nucleotide sugars (UDP-Hex, UDP-HexNAc). By switching to a C glucose containing feed media during constant operation at 20 × 10 cells and a perfusion rate of 1 reactor volume per day, isotopic steady state was studied. A step change to the C glucose medium in spin tubes allowed the determination of characteristic times for the intracellular turnover of unlabeled metabolites pools, τST (≤0.56 days), which were confirmed in the bioreactor. On the other hand, it is shown that the reactor residence time τR (1 day) and characteristic time for glucose uptake τGlc (0.33 days), representative of the bioreactor dynamics, delayed the consumption of C glucose in the bioreactor and thus the intracellular C enrichment. The proposed experimental approach allowed the decoupling of bioreactor hydrodynamics and intrinsic dynamics of cell metabolism in response to a change in the cell culture environment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1630-1639, 2017.
中国仓鼠卵巢(CHO)细胞在灌注生物反应器中的稳态运行需要使反应器动力学与细胞代谢达到平衡。因此,在本研究中,我们探究了细胞对其环境变化的瞬态响应以及它们与生物反应器流体动力学之间的相互作用。这是在台式灌注生物反应器中通过对复杂的细胞内核苷酸(ATP、UTP)和核苷酸糖(UDP - Hex、UDP - HexNAc)进行同位素标记,使用基质辅助激光解吸电离飞行时间质谱(MALDI - TOF MS)来完成的。在细胞密度为20×10且灌注速率为每天1个反应器体积的恒定运行过程中,通过切换到含¹³C葡萄糖的进料培养基来研究同位素稳态。在离心管中向¹³C葡萄糖培养基的阶跃变化使得能够确定未标记代谢物池细胞内周转的特征时间τST(≤0.56天),这在生物反应器中得到了证实。另一方面,结果表明代表生物反应器动力学的反应器停留时间τR(1天)和葡萄糖摄取特征时间τGlc(0.33天)延迟了生物反应器中¹³C葡萄糖的消耗,进而延迟了细胞内¹³C的富集。所提出的实验方法能够将生物反应器流体动力学与细胞代谢响应细胞培养环境变化的内在动力学解耦。©2017美国化学工程师学会 生物技术进展,33:1630 - 1639,2017。